版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
甘肃省白银市育正学校2025届高一上数学期末学业质量监测试题考生请注意:1.答题前请将考场、试室号、座位号、考生号、姓名写在试卷密封线内,不得在试卷上作任何标记。2.第一部分选择题每小题选出答案后,需将答案写在试卷指定的括号内,第二部分非选择题答案写在试卷题目指定的位置上。3.考生必须保证答题卡的整洁。考试结束后,请将本试卷和答题卡一并交回。一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1.下列函数在其定义域上既是奇函数又是减函数的是()A. B.C. D.2.某几何体的三视图如图,其正视图中的曲线部分为半圆,则该几何体的表面积为()A. B.C. D.3.若定义运算,则函数的值域是()A.(-∞,+∞) B.[1,+∞)C.(0.+∞) D.(0,1]4.若函数在上是增函数,则实数k的取值范围是()A. B.C. D.5.下列函数满足在定义域上为减函数且为奇函数的是()A. B.C. D.6.香农定理是所有通信制式最基本的原理,它可以用香农公式来表示,其中是信道支持的最大速度或者叫信道容量,是信道的带宽(),S是平均信号功率(),是平均噪声功率().已知平均信号功率为,平均噪声功率为,在不改变平均信号功率和信道带宽的前提下,要使信道容量增大到原来的2倍,则平均噪声功率约降为()A. B.C. D.7.在直角梯形中,,,,分别为,的中点,以为圆心,为半径的圆交于,点在弧上运动(如图).若,其中,,则的取值范围是A. B.C. D.8.从1,2,3,4这4个数中,不放回地任意取两个数,两个数都是奇数概率是A. B.C. D.9.在下列各区间上,函数是单调递增的是A. B.C. D.10.已知,,则()A. B.C. D.二、填空题:本大题共6小题,每小题5分,共30分。11.函数(a>0且a≠1)的图象恒过点定,若角终边经过点,则___________.12.已知幂函数的图象经过点,则___________.13.命题“”的否定是___________.14.若函数是幂函数,则函数(其中,)的图象过定点的坐标为__________15.__________.16.如图,已知矩形ABCD,AB=1,BC=a,PA⊥平面ABCD,若在BC上只有一个点Q满足PQ⊥QD,则a的值等于________三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17.已知函数(且).(1)判断的奇偶性,并予以证明;(2)求使得成立的的取值范围.18.如图,已知圆的圆心在坐标原点,点是圆上的一点(Ⅰ)求圆的方程;(Ⅱ)若过点的动直线与圆相交于,两点.在平面直角坐标系内,是否存在与点不同的定点,使得恒成立?若存在,求出点的坐标;若不存在,请说明理由19.设函数,.(1)判断函数的单调性,并用定义证明;(2)若关于x的方程在上有解,求实数a的取值范围.20.已知角终边与单位圆交于点(1)求的值;(2)若,求的值.21.已知函数的图象关于直线对称,且图象相邻两个最高点的距离为.(1)求和的值;(2)若,求的值.
参考答案一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1、D【解析】对于A:由定义法判断出不是奇函数,即可判断;对于B:判断出在R上为增函数,即可判断;对于C:不能说在定义域是减函数,即可判断;对于D:用图像法判断.【详解】对于A:的定义域为R..所以不是奇函数,故A错误;对于B:在R上为增函数.故B错误;对于C:在为减函数,在为减函数,但不能说在定义域是减函数.故C错误;对于D:,作出图像如图所示:所以既是奇函数又是减函数.故D正确.故选:D2、C【解析】几何体是一个组合体,包括一个三棱柱和半个圆柱,三棱柱的是一个底面是腰为的等腰直角三角形,高是,其底面积为:,侧面积为:;圆柱的底面半径是,高是,其底面积为:,侧面积为:;∴组合体的表面积是,本题选择C选项点睛:(1)以三视图为载体考查几何体的表面积,关键是能够对给出的三视图进行恰当的分析,从三视图中发现几何体中各元素间的位置关系及数量关系(2)多面体的表面积是各个面的面积之和;组合体的表面积应注意重合部分的处理(3)圆柱、圆锥、圆台的侧面是曲面,计算侧面积时需要将这个曲面展为平面图形计算,而表面积是侧面积与底面圆的面积之和3、D【解析】作出函数的图像,结合图像即可得出结论.【详解】由题意分析得:取函数与中的较小的值,则,如图所示(实线部分):由图可知:函数的值域为:.故选:D.【点睛】本题主要考查了指数函数的性质和应用.考查了数形结合思想.属于较易题.4、C【解析】根据二次函数的对称轴在区间的左边,即可得到答案;【详解】由题意得:,故选:C5、C【解析】根据各个基本初等函数的性质,结合函数变换的性质判断即可【详解】对A,为偶函数,故A错误;对B,为偶函数,故B错误;对C,在定义域上为减函数且为奇函数,故C正确;对D,在和上分别单调递减,故D错误;故选:C【点睛】本题主要考查了常见基本初等函数的性质,属于基础题6、A【解析】利用题设条件,计算出原信道容量的表达式,再列出在B不变时用所求平均噪声功率表示的信道容量的表达式,最后列式求解即得.【详解】由题意可得,,则在信道容量未增大时,信道容量为,信道容量增大到原来2倍时,,则,即,解得,故选:A7、D【解析】建立如图所示的坐标系,则A(0,0),B(2,0),D(0,1),C(2,2),E(2,1),F(1,1.5),P(cosα,sinα)(0≤α),由λμ得,(cosα,sinα)=λ(2,1)+μ(﹣1,),λ,μ用参数α进行表示,利用辅助角公式化简,即可得出结论【详解】解:建立如图所示的坐标系,则A(0,0),B(2,0),D(0,1),C(2,2),E(2,1),F(1,1.5),P(cosα,sinα)(0≤α),由λμ得,(cosα,sinα)=λ(2,1)+μ(﹣1,)⇒cosα=2λ﹣μ,sinα=λ⇒λ,∴6λ+μ=6()2(sinα+cosα)=2sin()∵,∴sin()∴2sin()∈[2,2],即6λ+μ的取值范围是[2,2]故选D【点睛】本题考查平面向量的坐标运算,考查学生的计算能力,正确利用坐标系是关键.属于中档题8、A【解析】从1,2,3,4这4个数中,不放回地任意取两个数,共有(12),(1,3),(1,4),(2,1),(2,3),(2,4)(3,1),(3,2),(3,4),(4,1),(4,2),(4,3)共12种其中满足条件两个数都是奇数的有(1,3),(3,1)两种情况故从1,2,3,4这4个数中,不放回地任意取两个数,两个数都是奇数的概率.故选A.9、C【解析】根据选项的自变量范围判断函数的单调区间即可.【详解】当时,,由正弦函数单调性知,函数单增区间应满足,即,观察选项可知,是函数的单增区间,其余均不是,故选:C10、B【解析】应用同角关系可求得,再由余弦二倍角公式计算.【详解】因,所以,所以,所以.故选:B.【点睛】本题考查同角间的三角函数关系,考查余弦的二倍角公式.求值时要注意角的取值范围,以确定函数值的正负.二、填空题:本大题共6小题,每小题5分,共30分。11、【解析】利用指数函数的性质得出定点,由任意角三角函数的定义得出三角函数值,结合诱导公式代入求值即可【详解】,且故答案为:12、##【解析】根据题意得到,求出的值,进而代入数据即可求出结果.【详解】由题意可知,即,所以,即,所以,因此,故答案为:.13、,.【解析】根据特称命题的否定的性质进行求解即可.【详解】特称命题的否定,先把存在量词改为全称量词,再把结论进行否定即可,命题“,”的否定是“,”,故答案为:,.14、(3,0)【解析】若函数是幂函数,则,则函数(其中,),令,计算得出:,,其图象过定点的坐标为15、1【解析】应用诱导公式化简求值即可.【详解】原式.故答案为:1.16、2【解析】证明平面得到,故与以为直径的圆相切,计算半径得到答案.详解】PA⊥平面ABCD,平面ABCD,故,PQ⊥QD,,故平面,平面,故,在BC上只有一个点Q满足PQ⊥QD,即与以为直径的圆相切,,故间的距离为半径,即为1,故.故答案为:2三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17、(1)见解析;(2)见解析【解析】【试题分析】(I)先求得函数的定义域,然后利用奇偶性的定义判断出函数为奇函数.(2)化简原不等式,并按两种情况来解不等式,由此求得的取值范围.【试题解析】(Ⅰ)由得定义域为是奇函数(Ⅱ)由得①当时,,解得②当时,,解得当时的取值范围是;当时的取值范围是【点睛】本题主要考查函数的性质,考查函数的定义域和奇偶性,考查不等式的求解方法,考查分类讨论的数学思想.要判断一个函数的奇偶性,首先要求函数的定义域,如果函数的定义域不关于原点对称,则该函数为非奇非偶函数.含有参数不等式的求解,往往需要对参数进行分类讨论.18、(Ⅰ);(Ⅱ).【解析】(Ⅰ)设圆的方程为,将代入,求得,从而可得结果;(Ⅱ)先设,由可得,再证明对任意,满足即可,,则利用韦达定理可得,,由角平分线定理可得结果.【详解】(Ⅰ)设圆的方程为,将代入,求得,所以圆的方程为;(Ⅱ)先设,,由由(舍去)再证明对任意,满足即可,由,则则利用韦达定理可得,化为所以,由角平分线定理可得,即存在与点不同的定点,使得恒成立,.【点睛】本题主要考查待定系数法求圆方程及韦达定理、直线和圆的位置关系及曲线线过定点问题.属于难题.探索曲线过定点的常见方法有两种:①可设出曲线方程,然后利用条件建立等量关系进行消元(往往可以化为的形式,根据求解),借助于曲线系的思想找出定点(直线过定点,也可以根据直线的各种形式的标准方程找出定点).②从特殊情况入手,先探求定点,再证明与变量无关.19、(1)在上为增函数,证明见解析;(2)【解析】(1)任取且,作差,整理计算判断出正负即可;(2)将关于x的方程在上有解转化为在上有解,进一步转化为在上的值域问题,求出值域即可.【详解】解:(1)任取且,,因为,所以,,所以,所以,所以在上为增函数;(2)由题意,得在上有解,即在上有解.由(1)知在上为增函数,所以,所以a的取值范围是.【点睛】方法点睛:方程解的个数问题可转化为两个函数图象交点的个数问题;已知方程有解求参数范围问题可转化为函数值域问题.20、(1);(2)或.【解析】(1)首先根据三角函数的定义,求得三角函数值,再结合二倍角公式化简,求值;(2)利用角的变换,利用两角和的余弦公式,化简求值.【详解】解:由三角函数定义得,(1)(2)∵∴∴当时当时21、(1),;(2)【解析】(1)根据对称轴和周期可求和的值(2)由题设可得,
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 景区临时工合同模板
- 农业房屋抵押合同模板
- 北京签供暖合同模板
- 采购巴西糖 合同模板
- 厂地出租合同模板
- 绿化管理合同模板
- 解除一期租房合同模板
- 美容员员工合同模板
- 餐饮经营购买合同模板
- 香港抵押贷款合同模板
- 2024年家装家居行业解决方案-淘天集团
- 粮油食材配送投标方案(大米食用油食材配送服务投标方案)(技术方案)
- 2024年中国北方工业限公司校园招聘易考易错模拟试题(共200题)试卷后附参考答案
- 2024-2030年中国超超临界发电机组行业现状动态与未来前景预测报告
- MOOC 颈肩腰腿痛中医防治-暨南大学 中国大学慕课答案
- 危险化学品安全使用许可适用行业目录(2013年版)3
- 轿车子午线轮胎用帘线品种及其性能
- 天然气室外立管吊装专项施工方案(完整版)
- 在音乐教学中培养学生的人文素养
- 4各部门定期识别适用的安全法律法规、标准规范和其他要求清单
- U型管卡标准[图表卡片]
评论
0/150
提交评论