版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
北京工大附中2025届数学高一上期末复习检测试题注意事项:1.答题前,考生先将自己的姓名、准考证号填写清楚,将条形码准确粘贴在考生信息条形码粘贴区。2.选择题必须使用2B铅笔填涂;非选择题必须使用0.5毫米黑色字迹的签字笔书写,字体工整、笔迹清楚。3.请按照题号顺序在各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试题卷上答题无效。4.保持卡面清洁,不要折叠,不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1.若,且,则的值是A. B.C. D.2.已知是定义在上的偶函数,且在上单调递减,若,,,则、、的大小关系为()A. B.C. D.3.命题:的否定是()A. B.C. D.4.若“”是“”的充分不必要条件,则()A. B.C. D.5.函数的一个零点所在的区间是()A. B.C. D.6.函数的大致图象是()A. B.C. D.7.已知偶函数的定义域为且,,则函数的零点个数为()A. B.C. D.8.函数零点所在区间为A. B.C. D.9.已知,,,则()A. B.C. D.210.若且,则函数的图象一定过点()A. B.C. D.二、填空题:本大题共6小题,每小题5分,共30分。11.若、是关于x的方程的两个根,则__________.12.已知的定义域为,那么a的取值范围为_________13.已知函数的图象过原点,则___________14.已知函数,若,则实数的取值范围为______.15.已知点,直线与线段相交,则实数的取值范围是____;16.已知一组数据的平均数,方差,则另外一组数据的平均数为___________,方差为___________.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17.已知某公司生产某款手机的年固定成本为400万元,每生产1万部还需另投入160万元设公司一年内共生产该款手机万部且并全部销售完,每万部的收入为万元,且写出年利润万元关于年产量(万部)的函数关系式;当年产量为多少万部时,公司在该款手机的生产中所获得的利润最大?并求出最大利润18.函数y=cosx+sinx的最小正周期、最大值、最小值.19.已知点,圆.(1)求过点且与圆相切的直线方程;(2)若直线与圆相交于,两点,且弦的长为,求实数的值.20.已知函数..(1)判断函数的奇偶性并证明;(2)若函数在区间上单调递减,且值域为,求实数的取值范围21.已知函数,其中.(1)若是周期为的偶函数,求及的值.(2)若在上是增函数,求的最大值.(3)当时,将函数的图象向右平移个单位,再向上平移1个单位,得到函数的图象,若在上至少含有10个零点,求b的最小值.
参考答案一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1、A【解析】由,则,考点:同角间基本关系式2、D【解析】分析可知函数在上为增函数,比较、、的大小,结合函数的单调性与偶函数的性质可得出结论.【详解】因为偶函数在上为减函数,则该函数在上为增函数,,则,即,,,所以,,故,即.故选:D.3、A【解析】根据特称命题的否定为全称命题,从而可得出答案.【详解】因为特称命题的否定为全称命题,所以命题“”的否定为“”.故选:A.4、B【解析】转化“”是“”的充分不必要条件为,分析即得解【详解】由题意,“”是“”的充分不必要条件故故故选:B5、B【解析】先求出根据零点存在性定理得解.【详解】由题得,,所以所以函数一个零点所在的区间是.故选B【点睛】本题主要考查零点存在性定理,意在考查学生对该知识的理解掌握水平,属于基础题.6、C【解析】由奇偶性定义判断的奇偶性,结合对数、余弦函数的性质判断趋向于0时的变化趋势,应用排除法即可得正确答案.【详解】由且定义域,所以为偶函数,排除B、D.又在趋向于0时趋向负无穷,在趋向于0时趋向1,所以在趋向于0时函数值趋向负无穷,排除A.故选:C7、D【解析】令得,作出和在上的函数图象如图所示,由图像可知和在上有个交点,∴在上有个零点,∵,均是偶函数,∴在定义域上共有个零点,故选点睛:对于方程解的个数(或函数零点个数)问题,可利用函数的值域或最值,结合函数的单调性、草图确定其中参数范围.从图象的最高点、最低点,分析函数的最值、极值;从图象的对称性,分析函数的奇偶性;从图象的走向趋势,分析函数的单调性、周期性等8、C【解析】利用零点存在性定理计算,由此求得函数零点所在区间.【详解】依题意可知在上为增函数,且,,,所以函数零点在区间.故选C.【点睛】本小题主要考查零点存在性定理的运用,属于基础题.9、D【解析】利用同角三角函数关系式可求,再应用和角正切公式即求.【详解】∵,,∴,,∴.故选:D.10、C【解析】令求出定点的横坐标,即得解.【详解】解:令.当时,,所以函数的图象过点.故选:C.二、填空题:本大题共6小题,每小题5分,共30分。11、【解析】先通过根与系数的关系得到的关系,再通过同角三角函数的基本关系即可解得.【详解】由题意:,所以或,且,所以,即,因为或,所以.故答案为:.12、【解析】根据题意可知,的解集为,由即可求出【详解】依题可知,的解集为,所以,解得故答案为:13、0【解析】由题意可知,函数经过坐标原点,只需将原点坐标带入函数解析式,即可完成求解.【详解】因为的图象过原点,所以,即故答案为:0.14、或【解析】令,分析出函数为上的减函数且为奇函数,将所求不等式变形为,可得出关于的不等式,解之即可.【详解】令,对任意的,,故函数的定义域为,因为,则,所以,函数为奇函数,当时,令,由于函数和在上均为减函数,故函数在上也为减函数,因为函数在上为增函数,故函数在上为减函数,所以,函数在上也为减函数,因为函数在上连续,则在上为减函数,由可得,即,所以,,即,解得或.故答案为:或.15、【解析】由直线,即,此时直线恒过点,则直线的斜率,直线的斜率,若直线与线段相交,则,即,所以实数的取值范围是点睛:本题考查了两条直线的位置关系的应用,其中解答中把直线与线段有交点转化为直线间的斜率之间的关系是解答的关键,同时要熟记直线方程的各种形式和直线过定点的判定,此类问题解答中把直线与线段有交点转化为定点与线段端点斜率之间关系是常见的一种解题方法,着重考查了学生分析问题和解答问题的能力16、①.32②.135【解析】由平均数与方差的性质即可求解.【详解】由题意,数据的平均数为,方差为.故答案为:;三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17、(1),;(2)当时,y取得最大值57600万元【解析】根据题意,即可求解利润关于产量的关系式为,化简即可求出;由(1)的关系式,利用基本不等式求得最大值,即可求解最大利润【详解】(1)由题意,可得利润关于年产量的函数关系式为,.由可得,当且仅当,即时取等号,所以当时,y取得最大值57600万元【点睛】本题主要考查了函数的实际应用问题,以及利用基本不等式求最值,其中解答中认真审题,得出利润关于年产量的函数关系式,再利用基本不等式求解是解答的关键,着重考查了分析问题和解答问题的能力,属于基础题18、,2,.【解析】先对函数进行化简,然后结合性质可求.【详解】;最小正周期为;当,即时,取到最大值;当,即时,取到最小值;【点睛】本题主要考查三角函数的性质,一般是把目标式化简为标准型,然后结合性质求解,侧重考查数学抽象的核心素养.19、(1)或;(2).【解析】(1)考虑切线的斜率是否存在,结合直线与圆相切的的条件d=r,直接求解圆的切线方程即可(2)利用圆的圆心距、半径及半弦长的关系,列出方程,求解a即可【详解】(1)由圆的方程得到圆心,半径.当直线斜率不存在时,直线与圆显然相切;当直线斜率存在时,设所求直线方程为,即,由题意得:,解得,∴方程为,即.故过点且与圆相切的直线方程为或.(2)∵弦长为,半径为2.圆心到直线的距离,∴,解得.【点睛】本题考查直线与圆的位置关系的综合应用,考查切线方程的求法,考查了垂径定理的应用,考查计算能力20、(1)奇函数(2)【解析】(1)先求定义域,再研究与的关系得函数奇偶性;(2)由函数在上的单调性,得函数的值域,又因为值域为,转化为关于和的关系式,由二次函数的图像与性质求的取值范围【详解】(1)函数定义域为,且.所以函数为奇函数(2)考察为单调增函数,利用复合函数单调性得到,所以,,即,即为方程的两个根,且,令,满足条件,解得.【点睛】判断函数的奇偶性,要先求定义域,判断定义域是否关于原点对称再求与的关系;计算函数的值域,要先根据函数的定义域及单调性求解21、(1),,;(2);(3).【解析】(1)由题知,,进而求解即可得答案;(2)由题知函数在上是增函数,故,进而解不等式即可得答案.(3)由题知,进而根据题意得方程在上至少含有10个零点,进而得,再解不等式即可得答案.【详解】解:(1)由题知,因为是周期为的偶函数,所以,,解得:,,所
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 城市智能共享单车投放与运营管理手册
- 员工培训效果评估手册
- 服装用贵金属制缝制标签相关项目实施方案
- 2023-2024-1-大学英语1(专科)学习通超星期末考试答案章节答案2024年
- 游泳池用水泵相关项目建议书
- 市场营销(公选课)学习通超星期末考试答案章节答案2024年
- 境外中资企业(机构)报到登记表
- 有柄瓷杯项目可行性实施报告
- 企业内部信息安全保护措施方案
- DB11T 1322.43-2017 安全生产等级评定技术规范 第43部分:汽车租赁企业
- 概率统计简明教程课后习题答案非常详细版
- XXX铁路局职工教育培训管理制度
- 初级药士全基础知识全讲义
- 淮安美协第三届理事会工作报告 - 江苏省淮安市美术家协会欢迎您 ...
- 漆包线检验方法介绍
- 浅谈如何培养特优生
- 断绝母子关系协议书(共1页)
- XXX汽车零部件开发推进计划表
- 新苏教版数学小学六年级上册单元试题全册
- 简历常用icon图标Word简历模板
- 理工学院大一新生动员大会PPT课件
评论
0/150
提交评论