河南广东联考2025届高二上数学期末学业质量监测模拟试题含解析_第1页
河南广东联考2025届高二上数学期末学业质量监测模拟试题含解析_第2页
河南广东联考2025届高二上数学期末学业质量监测模拟试题含解析_第3页
河南广东联考2025届高二上数学期末学业质量监测模拟试题含解析_第4页
河南广东联考2025届高二上数学期末学业质量监测模拟试题含解析_第5页
已阅读5页,还剩9页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

河南广东联考2025届高二上数学期末学业质量监测模拟试题考生请注意:1.答题前请将考场、试室号、座位号、考生号、姓名写在试卷密封线内,不得在试卷上作任何标记。2.第一部分选择题每小题选出答案后,需将答案写在试卷指定的括号内,第二部分非选择题答案写在试卷题目指定的位置上。3.考生必须保证答题卡的整洁。考试结束后,请将本试卷和答题卡一并交回。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.已知是虚数单位,若复数满足,则()A. B.2C. D.42.设,是双曲线()的左、右焦点,是坐标原点.过作的一条渐近线的垂线,垂足为.若,则的离心率为A. B.C. D.3.已知是空间的一个基底,若,,若,则()A. B.C.3 D.4.已知、是椭圆和双曲线的公共焦点,是它们的一个公共点,且,椭圆的离心率为,双曲线的离心率为,则()A.2 B.3C.4 D.55.双曲线C:的渐近线方程为()A. B.C. D.6.若直线与直线平行,则()A. B.C. D.7.已知关于的不等式的解集是,则的值是()A. B.5C. D.78.各项均为正数的等比数列的前项和为,若,,则()A. B.C. D.9.已知函数,的导函数,的图象如图所示,则的极值情况为()A.2个极大值,1个极小值 B.1个极大值,1个极小值C.1个极大值,2个极小值 D.1个极大值,无极小值10.双曲线的焦点坐标为()A. B.C. D.11.函数在上的最小值为()A. B.4C. D.12.已知直线,若直线与垂直,则的倾斜角为()A. B.C. D.二、填空题:本题共4小题,每小题5分,共20分。13.若a,b,c都为正数,,且,,成等比数列,则的最大值为____________.14.已知双曲线的左、右焦点分别为,双曲线左支上点满足,则的面积为_________15.定义离心率是的椭圆为“黄金椭圆”.已知椭圆是“黄金椭圆”,则_________.若“黄金椭圆”两个焦点分别为、,P为椭圆C上的异于顶点的任意一点,点M是的内心,连接并延长交于点N,则________.16.两条平行直线与的距离是__________三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(12分)已知等差数列的公差,前3项和,且成等比数列.(1)求数列的通项公式;(2)若,求数列的前项和.18.(12分)已知曲线C的方程为(1)判断曲线C是什么曲线,并求其标准方程;(2)过点的直线l交曲线C于M,N两点,若点P为线段MN的中点,求直线l的方程19.(12分)已知直线过点,且被两条平行直线,截得的线段长为.(1)求的最小值;(2)当直线与轴平行时,求的值.20.(12分)已知等差数列的前项和为,且,(1)求数列的通项公式;(2)若数列满足,求数列的前项和21.(12分)在四棱锥P﹣ABCD中,∠ABC=∠ACD=90°,∠BAC=∠CAD=60°,PA⊥平面ABCD,E为PD的中点,PA=2AB=2(1)求四棱锥P﹣ABCD的体积V;(2)若F为PC的中点,求证PC⊥平面AEF22.(10分)如图,已知平行六面体中,底面ABCD是边长为1的正方形,,,设,,(1)用,,表示,并求;(2)求

参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、C【解析】先求出,然后根据复数的模求解即可【详解】,,则,故选:C2、B【解析】分析:由双曲线性质得到,然后在和在中利用余弦定理可得详解:由题可知在中,在中,故选B.点睛:本题主要考查双曲线的相关知识,考查了双曲线的离心率和余弦定理的应用,属于中档题3、C【解析】由,可得存在实数,使,然后将代入化简可求得结果【详解】,,因,所以存在实数,使,所以,所以,所以,得,,所以,故选:C4、C【解析】依据椭圆和双曲线定义和题给条件列方程组,得到关于椭圆的离心率和双曲线的离心率的关系式,即可求得的值.【详解】设椭圆的长轴长为,双曲线的实轴长为,令,不妨设则,解之得代入,可得整理得,即,也就是故选:C5、D【解析】根据给定的双曲线方程直接求出其渐近线方程作答.【详解】双曲线C:的实半轴长,虚半轴长,即有,而双曲线C的焦点在y轴上,所以双曲线C的渐近线的方程为,即.故选:D6、D【解析】根据两直线平行可得出关于实数的等式,由此可解得实数的值.【详解】由于直线与直线平行,则,解得.故选:D.7、D【解析】由题意可得的根为,然后利用根与系数的关系列方程组可求得结果【详解】因为关于的不等式的解集是,所以方程的根为,所以,得,所以,故选:D8、D【解析】根据等比数列性质可知,,,成等比数列,由等比中项特点可构造方程求得,由等比数列通项公式可求得,进而得到结果.【详解】由等比数列的性质可得:,,,成等比数列,则,即,解得:,,,解得:.故选:D.9、B【解析】根据图象判断的正负,再根据极值的定义分析判断即可【详解】由,得,令,由图可知的三个根即为与的交点的横坐标,当时,,当时,,即,所以为的极大值点,为的极大值,当时,,即,所以为的极小值点,为的极小值,故选:B10、C【解析】把双曲线方程化为标准形式,直接写出焦点坐标.【详解】,焦点在轴上,,故焦点坐标为.故选:C.11、D【解析】求出导数,由导数确定函数在上的单调性与极值,可得最小值【详解】,所以时,,递减,时,,递增,所以是在上的唯一极值点,极小值也是最小值.故选:D12、D【解析】由直线与垂直得到的斜率,再利用斜率与倾斜角的关系即可得到答案.【详解】因为直线与垂直,且,所以,解得,设的倾斜角为,,所以.故选:D二、填空题:本题共4小题,每小题5分,共20分。13、【解析】由等比数列性质知,即可得,再利用基本不等式求解即可.【详解】由,,成等比数列,得,即又,则,所以,即,即所以,当且仅当时,等号成立,故的最大值为故答案为:14、3【解析】由双曲线方程可得,利用双曲线定义,以及直角三角形的勾股定理可得,由此求得答案.【详解】由双曲线的左、右焦点分别为,双曲线左支上点满足,可得:,则,且,故,所以,故,故答案为:315、①.②.【解析】第一空,直接套入“黄金椭圆”新定义即可,第二空,从内切圆入手,找到等量关系,进而得到,求解即可【详解】由题,,所以如图,连接,设内切圆半径为,则,即,∴,∴,∴∴,∴故答案为:;【点睛】本题从新定义出发,第一空直接套用定义可得答案,第二空升华,需要在理解新定义的基础上,借助内切圆的相关公式求解,层层递进,是一道好题.关键点在于找到“”这一关系16、5【解析】根据两平行直线,可求得a值,根据两平行线间距离公式,即可得答案.【详解】因为两平行直线与,所以,解得,所以两平行线的距离.故答案为:5三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17、(1)(2)【解析】(1)由,且成等比数列列式求解出和,然后写出;(2)由,用错位相减法求和即可.【详解】(1)∵,∴①又∵成等比数列,∴,②∵,由①②解得:,,∴(2)∵,,∴两式相减,得∴【点睛】本题考查了等差数列基本量的计算,错位相减法求和,属于中档题.18、(1);(2).【解析】(1)根据椭圆的定义即可判断并求解;(2)根据点差法即可求解中点弦斜率和中点弦方程.【小问1详解】设,,E(x,y),∵,,且,点的轨迹是以,为焦点,长轴长为4的椭圆设椭圆C的方程为,记,则,,,,,曲线的标准方程为【小问2详解】根据椭圆对称性可知直线l斜率存在,设,则,由①-②得,,∴l:,即.19、(1)3;(2)5【解析】(1)由题可得和的距离即为的最小值;(2)可得此时直线的方程为,求出交点坐标即可求出距离.【详解】(1)由题可得当且时,取得最小值,即和的距离,由两平行线间的距离公式,得,所以的最小值为3.(2)当直线与轴平行时,方程为,设直线与直线,分别交于点,,则,,所以,即,所以.20、(1);(2).【解析】(1)设等差数列的公差为,根据已知条件可得出关于、的方程组,解出这两个量的值,即可求得数列的通项公式;(2)求得,利用裂项相消法可求得.【小问1详解】解:设等差数列公差为,,【小问2详解】解:,.21、(1)(2)见解析.【解析】(1)在中,,求得,由此能求出四棱锥的体积;(2)由平面,证得和,由此利用线面垂直的判定定理,即可证得平面.试题解析:(1)在中,.在中,.则.(2),为的中点,.平面.

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论