版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2025届阳江市重点中学高二上数学期末教学质量检测模拟试题考生须知:1.全卷分选择题和非选择题两部分,全部在答题纸上作答。选择题必须用2B铅笔填涂;非选择题的答案必须用黑色字迹的钢笔或答字笔写在“答题纸”相应位置上。2.请用黑色字迹的钢笔或答字笔在“答题纸”上先填写姓名和准考证号。3.保持卡面清洁,不要折叠,不要弄破、弄皱,在草稿纸、试题卷上答题无效。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.已知随机变量X的分布列如表所示,则()X123Pa2a3aA. B.C. D.2.若某群体中的成员只用现金支付的概率为,既用现金支付也用非现金支付的概率为,则不用现金支付的概率为()A. B.C. D.3.设是等比数列,则“对于任意的正整数n,都有”是“是严格递增数列”()A.充分不必要条件 B.必要不充分条件C.充要条件 D.既不充分也不必要条件4.在数列中,,则()A. B.C.2 D.15.已知椭圆和双曲线有共同的焦点,分别是它们的在第一象限和第三象限的交点,且,记椭圆和双曲线的离心率分别为,则等于()A.4 B.2C.2 D.36.双曲线的焦点到渐近线的距离为()A.1 B.2C. D.7.已知点在平面α上,其法向量,则下列点不在平面α上的是()A. B.C. D.8.已知等差数列的前项和为,,,当取最大时的值为()A. B.C. D.9.已知双曲线,过点作直线l与双曲线交于A,B两点,则能使点P为线段AB中点的直线l的条数为()A.0 B.1C.2 D.310.某高校甲、乙两位同学大学四年选修课程的考试成绩等级(选修课的成绩等级分为1,2,3,4,5,共五个等级)的条形图如图所示,则甲成绩等级的中位数与乙成绩等级的众数分别是()A.3,5 B.3,3C.3.5,5 D.3.5,411.已知等差数列的公差,是与的等比中项,则()A. B.C. D.12.下列关于函数及其图象的说法正确的是()A.B.最小正周期为C.函数图象的对称中心为点D.函数图象的对称轴方程为二、填空题:本题共4小题,每小题5分,共20分。13.若,,都为正实数,,且,,成等比数列,则的最小值为______14.已知球的半径为3,则该球的体积为_________.15.已知经过两点,的直线的斜率为1,则a的值为___________.16.写出一个渐近线的倾斜角为且焦点在y轴上的双曲线标准方程___________.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(12分)已知函数,曲线在点处的切线与直线垂直(其中为自然对数的底数)(1)求的解析式及单调递减区间;(2)若函数无零点,求的取值范围18.(12分)有三个条件:①数列的任意相邻两项均不相等,,且数列为常数列,②,③,,中,从中任选一个,补充在下面横线上,并回答问题已知数列的前n项和为,______,求数列的通项公式和前n项和19.(12分)已知双曲线()的一个焦点是,离心率.(1)求双曲线的方程;(2)若斜率为的直线与双曲线交于两个不同的点,线段的垂直平分线与两坐标轴围成的三角形的面积为,求直线的方程20.(12分)在直三棱柱ABC﹣A1B1C1中,AB⊥AC,AB=AC=2,A1A=4,点D是BC的中点;(I)求异面直线A1B,AC1所成角的余弦值;(II)求直线AB1与平面C1AD所成角的正弦值21.(12分)如图,在三棱锥中,,,为的中点.(1)求证:平面;(2)若点在棱上,且,求点到平面的距离.22.(10分)已知命题p:直线与双曲线的右支有两个不同的交点,命题q:直线与直线平行.(1)若,判断命题“”的真假;(2)若命题“”为真命题,求实数k的取值范围.
参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、C【解析】根据分布列性质计算可得;【详解】解:依题意,解得,所以;故选:C2、A【解析】利用对立事件概率公式可求得所求事件的概率.【详解】由对立事件的概率公式可知,该群体中的成员不用现金支付的概率为.故选:A.3、C【解析】根据严格递增数列定义可判断必要性,分类讨论可判断充分性.【详解】若是严格递增数列,显然,所以“对于任意的正整数n,都有”是“是严格递增数列”必要条件;对任意的正整数n都成立,所以中不可能同时含正项和负项,,即,或,即,当时,有,即,是严格递增数列,当时,有,即,是严格递增数列,所以“对于任意的正整数n,都有”是“是严格递增数列”充分条件故选:C4、A【解析】利用条件可得数列为周期数列,再借助周期性计算得解.【详解】∵∴,,所以数列是以3为周期的周期数列,∴,故选:A.5、A【解析】设椭圆的长半轴长为,双曲线的实半轴长为,由定义可得,,在中利用余弦定理可得,即可求出结果.【详解】设椭圆的长半轴长为,双曲线的实半轴长为,不妨设在第一象限,根据椭圆和双曲线定义,得,,,由可得,又,在中,,即,化简得,两边同除以,得.故选:A.【点睛】关键点睛:本题考查共焦点的椭圆与双曲线的离心率问题,解题的关键是利用定义以及焦点三角形的关系列出齐次方程式进行求解.6、A【解析】分别求出双曲线的焦点坐标和渐近线方程,利用点到直线的距离公式求出结果【详解】双曲线中,焦点坐标为渐近线方程为:∴双曲线的焦点到渐近线的距离故选:A7、D【解析】根据法向量的定义,利用向量垂直对四个选项一一验证即可.【详解】对于A:记,则.因为,所以点在平面α上对于B:记,则.因为,所以点在平面α上对于C:记,则.因为,所以点在平面α上对于D:记,则.因为,所以点不在平面α上.故选:D8、B【解析】由已知条件及等差数列通项公式、前n项和公式求基本量,再根据等差数列前n项和的函数性质判断取最大时的值.【详解】令公差为,则,解得,所以,当时,取最大值.故选:B9、A【解析】先假设存在这样的直线,分斜率存在和斜率不存在设出直线的方程,当斜率k存在时,与双曲线方程联立,消去,得到关于的一元二次方程,直线与双曲线相交于两个不同点,则,,又根据是线段的中点,则,由此求出与矛盾,故不存在这样的直线满足题意;当斜率不存在时,过点的直线不满足条件,故符合条件的直线不存在.详解】设过点的直线方程为或,①当斜率存在时有,得(*)当直线与双曲线相交于两个不同点,则必有:,即又方程(*)的两个不同的根是两交点、的横坐标,又为线段的中点,,即,,使但使,因此当时,方程①无实数解故过点与双曲线交于两点、且为线段中点的直线不存在②当时,经过点的直线不满足条件.综上,符合条件的直线不存在故选:A10、C【解析】将甲的所有选修课等级从低到高排列可得甲的中位数,由图可知乙的选修课等级的众数.【详解】由条形图可得,甲同学共有10门选修课,将这10门选修课的成绩等级从低到高排序后,第5,6门的成绩等级分别为3,4,故中位数为,乙成绩等级的众数为5.故选:C.11、C【解析】由等比中项的性质及等差数列通项公式可得即可求.【详解】由,则,可得.故选:C.12、D【解析】化简,利用正弦型函数的性质,依次判断,即可【详解】∵∴,A选项错误;的最小正周期为,B选项错误;令,则,故函数图象的对称中心为点,C选项错误;令,则,所以函数图象的对称轴方程为,D选项正确故选:D二、填空题:本题共4小题,每小题5分,共20分。13、##【解析】利用等比中项及条件可得,进而可得,再利用基本不等式即得.【详解】∵,,都为正实数,,,成等比数列,∴,又,∴,即,∴,∴,当且仅当,即取等号.故答案为:.14、【解析】根据球的体积公式计算可得;【详解】解:因为球的半径,所以球的体积;故答案为:15、6【解析】根据经过两点的直线斜率计算公式即可求的参数a﹒【详解】由题意可知,解得故答案为:616、(答案不唯一)【解析】根据已知条件写出一个符合条件的方程即可.【详解】如,焦点在y轴上,令,得渐近线方程为,其中的倾斜角为.故答案为:(答案不唯一).三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17、(1)单调减区间为和;(2)的取值范围为:或【解析】(1)先求出函数的导数,求得切线的斜率,由两直线垂直的条件,可得,求得的解析式,可得导数,令导数小于0,可得减区间;(2)先求得,要使函数无零点,即要在内无解,亦即要在内无解.构造函数,对其求导,然后对进行分类讨论,运用单调性和函数零点存在性定理,即可得到的取值范围.【详解】(1),又由题意有:,故.此时,,由或,所以函数的单调减区间为和.(2),且定义域为,要函数无零点,即要在内无解,亦即要在内无解.构造函数.①当时,在内恒成立,所以函数在内单调递减,在内也单调递减.又,所以在内无零点,在内也无零点,故满足条件;②当时,⑴若,则函数在内单调递减,在内也单调递减,在内单调递增.又,所以在内无零点;易知,而,故在内有一个零点,所以不满足条件;⑵若,则函数在内单调递减,在内单调递增.又,所以时,恒成立,故无零点,满足条件;⑶若,则函数在内单调递减,在内单调递增,在内也单调递增.又,所以在及内均无零点.又易知,而,又易证当时,,所以函数在内有一零点,故不满足条件.综上可得:的取值范围为:或.【点睛】本题主要考查导数的几何意义、应用导数研究函数的零点问题、其中分类讨论思想.本题覆盖面广,对考生计算能力要求较高,是一道难题,解答本题,准确求导数是基础,恰当分类讨论是关键,易错点是分类讨论不全面、不彻底、不恰当,或因复杂式子变形能力差,而错漏百出.本题能较好的考查考生的逻辑思维能力、基本计算能力、分类讨论思想等18、;【解析】选①,由数列为常数列可得,由此可求,根据任意相邻两项均不相等可得,由此证明数列为等比数列,并求出数列的通项公式,利用分组求和法求数列的前n项和为,选②由取可求,再取与原式相减可得,由此证明数列为等比数列,并求出数列的通项公式,利用分组求和法求数列的前n项和为,选③由取与原式相减可得,取可求,由此可得,故,由此证明数列为等比数列,并求出数列的通项公式,利用分组求和法求数列的前n项和为,【详解】解:选①:因为,数列为常数列,所以,解得或,又因为数列的任意相邻两项均不相等,且,所以数列为2,-1,2,-1,2,-1……,所以,即,所以,又,所以是以为首项,公比为-1的等比数列,所以,即;所以选②:因为,易知,,所以两式相减可得,即,以下过程与①相同;选③:由,可得,又,时,,所以,因为,所以也满足上式,所以,即,以下过程与①相同19、(1)(2)【解析】(1)由已知及离心率公式直接计算;(2)设直线方程为,联立方程组可得中点及中垂线方程,根据三角形面积可得的值.【小问1详解】解:由已知得,,所以,,所以所求双曲线方程为.【小问2详解】解:设直线的方程为,点,联立整理得.(*)设的中点为,则,,所以线段垂直平分线的方程为,即,与坐标轴的交点分别为,,可得,得,,此时(*)的判别式,故直线的方程为.20、(I)(II)【解析】(I)以,,为x,y,z轴建立空间直角坐标系A﹣xyz,可得和的坐标,可得cos<,>,可得答案;(II)由(I)知,=(2,0,﹣4),=(1,1,0),设平面C1AD的法向量为=(x,y,z),由可得=(1,﹣1,),设直线AB1与平面C1AD所成的角为θ,则sinθ=|cos<,>|=,进而可得答案解:(I)以,,x,y,z轴建立空间直角坐标系A﹣xyz,则可得B(2,0,0),A1(0,0,4),C1(0,2,4),D(1,1,0),∴=(2,0,﹣4),=(0,2,4),∴cos<,>==∴异面直线A1B,AC1所成角的余弦值为:;(II)由(I)知,=(2,0,﹣4),=(1,1,0),设平面C1AD的法向量为=(x,y,z),则可得,即,取x=1可得=(1,﹣1,),设直线AB1与平面C1AD所成的角为θ,则sinθ=|cos<,>|=∴直线AB1与平面C1AD所成角的正弦值为:考点:异面直线及其所成的角;直线与平面所成的角21、(1)证明见解析;(2)【解析】(1)易得,再由勾股定理逆定理证明,即可得线面垂直;(2)根据(1)得,进而根据几何关系,利用等体积法求解即可.【详解】解:(1)连接,∵,是中点,∴,,又,,∴,∴,∵,∴,∴,,平面,∴平面;(2)∵点在棱上,且,,为的中点.∴,∴由余弦定理得,即,∴,由(1)平面,设点到平面的距离为∴,即,解得:所以点到平面的距离为.22
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 购销合同协议书模板示例
- 购销合同签订中的合同终止问题
- 购销框架合同范本及签订流程
- 软件开发及外包合同
- 轮胎购买合约范本
- 轻松培养小学生英语兴趣的方法解析
- 迟到情况说明与保证
- 郑州地理一模解析版大地特征解析
- 配电箱设备安装安全技术规程
- 酒店服务合同的培训要求
- GB/T 19867.1-2005电弧焊焊接工艺规程
- GB/T 15382-2021气瓶阀通用技术要求
- GB/T 15242.4-2021液压缸活塞和活塞杆动密封装置尺寸系列第4部分:支承环安装沟槽尺寸系列和公差
- 仪器仪表维保方案
- 全国教育科学规划课题开题报告课件
- 安徽省合肥市庐阳区2021-2022学年七年级(上)期末数学试卷及答案解析
- 上海院士专家工作站申请表
- 《竖弯钩》名师课件(市优)
- 体外冲击波碎石课件
- 化工试生产总结报告
- 传统节日腊八飘香腊八节风俗习惯科普PPT
评论
0/150
提交评论