版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2025届辽宁省营口高中等重点协作校高二上数学期末学业水平测试试题考生须知:1.全卷分选择题和非选择题两部分,全部在答题纸上作答。选择题必须用2B铅笔填涂;非选择题的答案必须用黑色字迹的钢笔或答字笔写在“答题纸”相应位置上。2.请用黑色字迹的钢笔或答字笔在“答题纸”上先填写姓名和准考证号。3.保持卡面清洁,不要折叠,不要弄破、弄皱,在草稿纸、试题卷上答题无效。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.经过点,且被圆所截得的弦最短时的直线的方程为()A. B.C. D.2.如图,在空间四边形中,()A. B.C. D.3.如图,已知最底层正方体的棱长为a,上层正方体下底面的四个顶点是下层正方体上底面各边的中点,依此方法一直继续下去,则所有这些正方体的体积之和将趋近于()A. B.C. D.4.已知等差数列,且,则()A.3 B.5C.7 D.95.设为数列的前n项和,,且满足,若,则()A.2 B.3C.4 D.56.函数单调减区间是()A. B.C.和 D.7.已知数列满足:对任意的均有成立,且,,则该数列的前2022项和()A0 B.1C.3 D.48.由下面的条件一定能得出为锐角三角形的是()A. B.C. D.9.将一颗骰子先后抛掷2次,观察向上的点数,则点数之和是4的倍数但不是3的倍数的概率为()A. B.C. D.10.执行如图所示的程序框图,若输入t的取值范围为,则输出s的取值范围为()A. B.C. D.11.椭圆的长轴长是短轴长的2倍,则离心率()A. B.C. D.12.已知数列满足,则满足的的最大取值为()A.6 B.7C.8 D.9二、填空题:本题共4小题,每小题5分,共20分。13.已知函数,则________.14.在平面直角坐标系中,若抛物线上的点P到该抛物线焦点的距离为5,则点P的纵坐标为_______15.过点且与直线垂直的直线方程为______16.斐波那契数列,又称“兔子数列”,由数学家斐波那契研究兔子繁殖问题时引入.已知斐波那契数列满足,,,若记,,则________.(用,表示)三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(12分)如图,在四棱锥中,底面是矩形,平面于点M连接.(1)求证:平面;(2)求平面与平面所成角的余弦值.18.(12分)如图,三棱锥中,,,,,,点是PA的中点,点D是AC的中点,点N在PB上,且.(1)证明:平面CMN;(2)求平面MNC与平面ABC所成角的余弦值.19.(12分)在四棱锥中,底面为直角梯形,,,平面底面,为的中点,是棱上的点,,,.(1)求证:平面平面;(2)若,求直线与所成角的余弦值.20.(12分)已知函数(a是常数).(1)当时,求的单调区间与极值;(2)若,求a的取值范围.21.(12分)已知数列的前项和为,且满足,,成等比数列,.(1)求数列的通项公式;(2)令,求数列的前项和.22.(10分)已知点F是抛物线和椭圆的公共焦点,是与的交点,.(1)求椭圆的方程;(2)直线与抛物线相切于点,与椭圆交于,,点关于轴的对称点为.求的最大值及相应的.
参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、C【解析】当是弦中点,她能时,弦长最短.由此可得直线斜率,得直线方程【详解】根据题意,圆心为,当与直线垂直时,点被圆所截得的弦最短,此时,则直线的斜率,则直线的方程为,变形可得,故选:C.【点睛】本题考查直线与圆相交弦长问题,掌握垂径定理是求解圆弦长问题的关键2、A【解析】利用空间向量加减法法则直接运算即可.【详解】根据向量的加法、减法法则得.故选:A.3、D【解析】由已知可判断出所有这些正方体的体积构成首项为,公比为的等比数列,然后求和可得答案.【详解】最底层上面第一个正方体的棱长为,其体积为,上面第二个正方体的棱长为,其体积为,上面第三个正方体的棱长为,其体积为,所有这些正方体的体积构成首项为,公比为的等比数列,其前项和为,当,,所以所有这些正方体的体积之和将趋近于.故选:D.4、B【解析】根据等差数列的性质求得正确答案.【详解】由于数列是等差数列,所以.故选:B5、B【解析】由已知条件可得数列为首项为2,公差为2的等差数列,然后根据结合等差数列的求和公式可求得答案【详解】在等式中,令,可得,所以数列为首项为2,公差为2的等差数列,因为,所以,化简得,,解得或(舍去),故选:B6、B【解析】根据函数求导,然后由求解.【详解】因为函数,所以,由,解得,所以函数的单调递减区间是,故选:B7、A【解析】根据可知,数列具有周期性,即可解出【详解】因为,所以,即,所以数列中的项具有周期性,,由,,依次对赋值可得,,一个周期内项的和为零,而,所以数列的前2022项和故选:A8、D【解析】对于A,两边平方得,由得,即为钝角;对于B,由正弦定理求出,进而求出,可得结果;对于C,根据平方关系将余弦化为正弦,用正弦定理可将角转化为边,进而可得的值,从而作出判断;对于D,由可得,推出,,,故可知三个内角均为锐角【详解】解:对于A,由,两边平方整理得,,因为,所以,所以,所以,所以为钝角三角形,故A不正确;对于B,由,得,所以,因为,所以,所以或,所以或,所以为直角三角形或钝角三角形,故B不正确;对于C,因为,所以,即,由正弦定理得,由余弦定理得,因为,所以,故三角形为钝角三角形,C不正确;对于D,由可得,因为中最多只有一个钝角,所以,,中最多只有一个为负数,所以,,,所以中三个内角都为锐角,所以为锐角三角形,故D正确;故选:D9、B【解析】基本事件总数,再利用列举法求出点数之和是4的倍数但不是3的倍数包含的基本事件的个数,由此能求出点数之和是4的倍数但不是3的倍数的概率【详解】解:将一颗骰子先后抛掷2次,观察向上的点数之和,基本事件总数,点数之和是4的倍数但不是3的倍数包含的基本事件有:,,,,,,,,共8个,则点数之和是4的倍数但不是3的倍数的概率为故选:B10、A【解析】由程序图可得,,再分段求解函数的值域,即可求解【详解】由程序图可得,当时,,,当时,,,综上所述,的取值范围为,故选:A11、D【解析】根据长轴长是短轴长的2倍,得到,利用离心率公式即可求得答案.【详解】∵,∴,故,故选:D12、B【解析】首先地推公式变形,得,,求得数列的通项公式后,再解不等式.【详解】因为,两边取倒数,得,整理为:,,所以数列是首项为1,公差为4的等差数列,,,因为,即,得,解得:,,所以的最大值是7.故选:B二、填空题:本题共4小题,每小题5分,共20分。13、2【解析】根据导数的计算法则计算即可.【详解】∵,∴,∴∴.故答案为:2.14、4【解析】根据抛物线的定义,列出方程,即可得答案.【详解】由题意:抛物线的准线为,设点P的纵坐标为,由抛物线定义可得,解得,所以点P的纵坐标为4.故答案为:415、【解析】先设出与直线垂直的直线方程,再把代入进行求解.【详解】设与直线垂直的直线为,将代入得:,解得:,故所求直线方程为.故答案为:16、【解析】由已知两式相加求得,得,得到,从而得到,,利用可得答案.【详解】因为,由,,得,所以,得,因为,所以,,所以,,所以,.故答案为:.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17、(1)证明见详解(2)【解析】(1)连接,交于点,则为中点,再由等腰三角形三线合一可知为中点,连接,利用中位线可知,根据直线与平面平行的判定定理即可证明;(2)根据题意建立空间直角坐标系,求出两个平面的法向量,利用向量法即可求出两平面所成角的余弦值.【小问1详解】连接,交于点,则为中点,因为,于,则为中点,连接,则,又因为平面,平面,所以平面;【小问2详解】如图所示,以点为坐标原点,建立空间直角坐标系,则,,设平面的一个法向量为,由可得,令,得,即,易知平面的一个法向量为,设平面与平面所成角为,,则平面与平面所成角的余弦值为.18、(1)证明见解析(2)【解析】建立如图所示空间直角坐标系,得到相关点和相关向量的坐标,(1)求出平面的法向量,利用证明即可;(2)由(1)知平面的法向量,再求平面的法向量,利用向量的夹角公式即可求解.【小问1详解】证明:三棱锥中,,,∴分别以,,,,轴建立如图所示空间直角坐标系∵,,点M是PA的中点,点D是AC的中点,点N在PB上且∴,,,,,设平面的法向量,,,,由得令得∴∵∴又平面∴平面;【小问2详解】,,∴平面∴为平面的法向量则与的夹角的补角是平面与平面所成二面角的平面角.∴平面与平面所成角的余弦值为.19、(1)证明见解析;(2);【解析】(1)证明,利用面面垂直的性质可得出平面,再利用面面垂直的判定定理可证得平面平面;(2)连接,以点为坐标原点,、、所在直线分别为轴建立空间直角坐标系,设,根据可得出,求出的值,利用空间向量法可求得直线与所成角的余弦值.【详解】(1)为的中点,且,则,又因为,则,故四边形为平行四边形,因为,故四边形为矩形,所以,平面平面,平面平面,平面,平面,因为平面,因此,平面平面;(2)连接,由(1)可知,平面,,为的中点,则,以点为坐标原点,所在直线分别为轴建立空间直角坐标系,则、、、、,设,,因为,则,解得,,,则.因此,直线与所成角的余弦值为.20、(1)函数在上单调递增,在上单调递减,极小值是,无极大值.(2)【解析】(1)由当,得到,求导,再由,求解;(2)将,转化为成立,令,求其最大值即可.【小问1详解】解:当时,,定义域为,所以,当时,,当时,,所以函数在上单调递增,在上单调递减,所以时,取得极小值是,无极大值.【小问2详解】因为,即成立.设,则,当时,,当时,,所以在上单调递增,在上单调递减,所以,所以,即.21、(1);(2).【解析】(1)由可得数列是公差为2的等差数列,再由,,成等比数列,列方程可求出,从而可求得数列的通项公式;(2)由(1)可得,然后利用裂项相消求和法可求出【详解】解:(1)由,可得,即数列是公差为2的等差数列.所以,,.由题意得,解得,所以.(2)由(1)可得,所以数列的前项和.22、(1);(2),
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2025年跨境电商平台入驻及货款垫付合作协议3篇
- 2025版科技创新反担保合同与研发设备抵押协议3篇
- 医院与保险公司合同管理
- 畜牧业发展承诺书网上填报
- 废旧轮胎处理合同
- 艺术空间租赁协议
- 消防安全评估防水施工合同
- 古玩市场物业员工招聘合同
- 个人工作室客户意见箱管理方案
- 森林防火维护爆炸品库房管理方案
- 风电教育培训体系建设
- 《机械基础(第七版)》期末考试复习题库(含答案)
- 乡村振兴与创新创业:激发农村创新创业活力
- 校园修缮施工方案
- 2018年全国统一施工机械台班费用定额
- 2023年中考语文一轮复习:童话示例与训练
- 自助画室创业计划书
- 软装设计合同范本
- 幼儿园人事工作计划
- 广东省深圳市福田区福田八校2023-2024学年九年级上学期开学道德与法治试题
- 老年人眼病与 叶黄素
评论
0/150
提交评论