版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
山东历城二中2025届数学高二上期末学业质量监测模拟试题注意事项:1.答卷前,考生务必将自己的姓名、准考证号、考场号和座位号填写在试题卷和答题卡上。用2B铅笔将试卷类型(B)填涂在答题卡相应位置上。将条形码粘贴在答题卡右上角"条形码粘贴处"。2.作答选择题时,选出每小题答案后,用2B铅笔把答题卡上对应题目选项的答案信息点涂黑;如需改动,用橡皮擦干净后,再选涂其他答案。答案不能答在试题卷上。3.非选择题必须用黑色字迹的钢笔或签字笔作答,答案必须写在答题卡各题目指定区域内相应位置上;如需改动,先划掉原来的答案,然后再写上新答案;不准使用铅笔和涂改液。不按以上要求作答无效。4.考生必须保证答题卡的整洁。考试结束后,请将本试卷和答题卡一并交回。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.已知随机变量,,则的值为()A.0.24 B.0.26C.0.68 D.0.762.在平形六面体中,其中,,,,,则的长为()A. B.C. D.3.二次方程的两根为2,,那么关于的不等式的解集为()A.或 B.或C. D.4.《九章算术》中的“商功”篇主要讲述了以立体几何为主的各种形体体积的计算,其中堑堵是指底面为直角三角形的直棱柱.如图,在堑堵中,M是的中点,,,,若,则()A. B.C. D.5.已知抛物线:,焦点为,若过的直线交抛物线于、两点,、到抛物线准线的距离分别为3、7,则长为A.3 B.4C.7 D.106.若是双曲线的左右焦点,是坐标原点.过作的一条渐近线的垂线,垂足为,若,则该双曲线的离心率为()A. B.C. D.7.设等差数列,的前n项和分别是,,若,则()A. B.C. D.8.已知分别是等差数列的前项和,且,则()A. B.C. D.9.若抛物线的焦点与椭圆的下焦点重合,则m的值为()A.4 B.2C. D.10.甲、乙两名同学8次考试的成绩统计如图所示,记甲、乙两人成绩的平均数分别为,,标准差分别为,,则()A.>,< B.>,>C.<,< D.<,>11.已知圆过点,,且圆心在轴上,则圆的方程是()A. B.C. D.12.设P是双曲线上的点,若,是双曲线的两个焦点,则()A.4 B.5C.8 D.10二、填空题:本题共4小题,每小题5分,共20分。13.已知为平面的一个法向量,为直线的方向向量.若,则__________.14.空间直角坐标系中,点,的坐标分别为,,则___________.15.已知函数,则曲线在点处的切线方程为___________.16.已知数列满足,将数列按如下方式排列成新数列:,,,,,,,,,…,,….则新数列的前70项和为______三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(12分)已知等差数列中,,,等比数列中,,(1)求数列的通项公式;(2)记,求的最小值18.(12分)在①,;②,,③,这三个条件中任选一个,补充在下面问题中并解决问题问题:设等差数列的前项和为,________________,若,判断是否存在最大值,若存在,求出取最大值时的值;若不存在,说明理由注:如果选择多个条件分别解答.按第一个解答记分19.(12分)已知集合,.(1)当时,求AB;(2)设,,若是成立的充分不必要条件,求实数的取值范围.20.(12分)已知命题p:实数x满足;命题q:实数x满足.若p是q的必要条件,求实数a的取值范围21.(12分)已知椭圆:的长轴长为6,离心率为,长轴的左,右顶点分别为A,B(1)求椭圆的方程;(2)已知过点的直线交椭圆于M、N两个不同的点,直线AM,AN分别交轴于点S、T,记,(为坐标原点),当直线的倾斜角为锐角时,求的取值范围22.(10分)如图,矩形ABCD,点E,F分别是线段AB,CD的中点,,,以EF为轴,将正方形AEFD翻折至与平面EBCF垂直的位置处.请按图中所给的方法建立空间直角坐标系,然后用空间向量坐标法完成下列问题(1)求证:直线平面;(2)求直线与平面所成角的正弦值.
参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、A【解析】根据给定条件利用正态分布的对称性计算作答.【详解】因随机变,,有P(ξ<4)=P(ξ≤4)=0.76,由正态分布的对称性得:,所以的值为0.24.故选:A2、B【解析】根据空间向量基本定理、加法的运算法则,结合空间向量数量积的运算性质进行求解即可.【详解】因为是平行六面体,所以,所以有:,因此有:,因为,,,,,所以,所以,故选:B3、B【解析】根据,确定二次函数的图象开口方向,再由二次方程的两根为2,,写出不等式的解集.【详解】因为二次方程的两根为2,,又二次函数的图象开口向上,所以不等式的解集为或,故选:B4、C【解析】建立坐标系,坐标表示向量,求出点坐标,进而求出结果.【详解】以为坐标原点,,,的方向分别为x,y,z轴的正方向建立空间直角坐标系.不妨令,则,,,,,.因为,所以,则,,,,则解得,,,故.故选:C5、D【解析】利用抛物线的定义,把的长转化为点到准线的距离的和得解【详解】解:抛物线:,焦点为,过的直线交抛物线于、两点,、到抛物线准线的距离分别为3、7,则故选D【点睛】本题考查抛物线定义的应用,意在考查学生对该知识的理解掌握水平和分析推理能力.6、D【解析】根据已知条件,找出,的齐次关系式即可得到双曲线的离心率.【详解】由题意得,,,在中,,因,故,在,由余弦定理得,即,计算得,故.故选:D.【点睛】双曲线的离心率是双曲线最重要的几何性质,求双曲线的离心率(或离心率的取值范围),常见有两种方法:①求出a,c,代入公式;②只需要根据一个条件得到关于a,b,c的齐次式,结合转化为a,c的齐次式,然后等式(不等式)两边分别除以a或转化为关于e的方程(不等式),解方程(不等式)即可得e(e的取值范围)7、B【解析】利用求解.【详解】解:因为等差数列,的前n项和分别是,所以.故选:B8、D【解析】利用及等差数列的性质进行求解.【详解】分别是等差数列的前项和,故,且,故,故选:D9、D【解析】求出椭圆的下焦点,即抛物线的焦点,即可得解.【详解】解:椭圆的下焦点为,即为抛物线焦点,∴,∴.故选:D.10、A【解析】根据折线统计图,结合均值、方差的实际含义判断、及、的大小.【详解】由统计图知:甲总成绩比乙总成绩要高,则>,又甲成绩的分布比乙均匀,故<.故选:A.11、B【解析】根据圆心在轴上,设出圆的方程,把点,的坐标代入圆的方程即可求出答案.【详解】因为圆的圆心在轴上,所以设圆的方程为,因为点,在圆上,所以,解得,所以圆的方程是.故选:B.12、C【解析】根据双曲线的定义可得:,结合双曲线的方程可得答案.【详解】由双曲线可得根据双曲线的定义可得:故选:C二、填空题:本题共4小题,每小题5分,共20分。13、##【解析】根据线面平行列方程,化简求得的值.【详解】由于,所以.故答案为:14、【解析】利用空间直角坐标系中两点间的距离公式计算即得.【详解】在空间直角坐标系中,因点,的坐标分别为,,所以.故答案为:15、【解析】对函数求导,由导数的几何意义可得切线的斜率,求得切点,由直线的点斜式方程可得所求切线的方程【详解】函数的导数为∴,.曲线在点处的切线方程为,即.故答案为:.16、##2.9375【解析】先根据题干条件得到,再利用错位相减法求前64项和,最后求出前70项和.【详解】①,当时,;当时,②,①-②得:,即又满足,所以由,得令,则,两式相减得,则所以新数列的前70项和为故答案为:三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17、(1)(2)0【解析】(1)利用等差数列通项公式基本量的计算可求得,进而利用等比数列的基本量的计算即可求得数列的通项公式;(2)由(1)可知,则,观察分析即可解【小问1详解】设等差数列的公差为d,所以由,,得所以,从而,,所以,,q=3,所以【小问2详解】由(1)可知,所以,当n=1时,为正值﹐所以;当n=2时,为负值﹐所以;当时,为正值﹐所以又综上:当n=3时,有最小值018、答案不唯一,具体见解析【解析】选①:易得,法一:令求n,即可为何值时取最大值;法二:写出,利用等差数列前n项和的函数性质判断为何值时有最大值;选②:由数列前n项和及等差数列下标和的性质易得、即可确定有最大值时值;选③:由等差数列前n项和公式易得、即可确定有最大值时值;【详解】选①:设数列的公差为,,,解得,即,法一:当时,有,得,∴当时,;,;时,,∴或时,取最大值法二:,对称轴,∴或时,取最大值选②:由,得,由等差中项的性质有,即,由,得,∴,故,∴当时,,时,,故时,取最大值选③:由,得,可得,由,得,可得,∴,故,∴当时,,时,,故时,取最大值【点睛】关键点点睛:根据所选的条件,结合等差数列前n项和公式的性质、下标和相等的性质等确定数列中项的正负性,找到界点n值即可.19、(1);(2).【解析】(1)由,解得范围,可得,由可得:,解得.即可得出(2)由,解得.根据是成立的必要条件,利用包含关系列不等式即可得出实数的取值范围【详解】(1)由,解得,可得:,可得:,化为:,解得,所以=.(2)q是p成立的充分不必要条件,所以集合B是集合A的真子集.由,解得,又集合A=,所以或解得0≤a≤2,即实数a的取值范围是.【点睛】本题考查了简易逻辑的判定方法、集合之间的关系、不等式的解法,考查了推理能力与计算能力,属于基础题20、【解析】由题设得是为真时的子集,即,法一:讨论、,根据集合的包含关系求参数范围;法二:利用在恒成立,结合参变分离及指数函数的单调性求参数范围.【详解】由,得,则命题对应的集合为,设命题对应的集合为,是的必要条件,则,由,得,又,法一:若时,,则,显然成立;若时,,则,可得,综上:法二:在恒成立,即,∵在单调递减,∴.21、(1)(2)【解析】(1)根据椭圆的长轴和离心率,可求得,进而得椭圆方程;(2)先判断直线斜率为正,然后设出直线方程,和椭圆方程联立,整理得根与系数的关系,利用直线方程求出点S、T的坐标,再根据确定的表达式,将根与系数的关系式代入化简,求得结果.【小问1详解】由题意可得:解得:,所以椭圆的方程:【小问2详解】当直线l的倾斜角为锐角时,设,设直线,由得,从而,又,得,所以,又直线的方程是:,令,解得,所以点S为;直线的方程是:,同理点T为·所以,因为,所以,所以∵,∴,综上,所以的范围是22、(1)证明见解析;(2).【解析】(1)以为坐标原点,建立空间直角坐标系,写出对应向量的坐标,根据向量垂直,即可证明线面垂直;(
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 创业培训开店流程策划
- 《超市的谈判和管理》课件
- 在线医疗数据
- 临床护理服务14项
- 严格质量承诺服务航空航天
- 文化公益捐赠管理办法
- 冬季流感预防与治疗
- 2024八年级英语上册Unit5MyFutureLesson28RichorPoor?ItDoesn'tMatter习题课件新版冀教版
- 【高中数学课件】两角和与差的正切课件
- 助理会计年终个人工作总结
- 《输血和血型》的教学设计
- 建筑装饰装修工程安全文明施工专项检查表
- 水电站330kV开关站投运调试方案
- 采购管理系统中运用业务重组的几点思考
- 第二部分项目管理人员配备情况及相关证明、业绩资料
- 旅游发展产业大会总体方案
- 民用机场竣工验收质量评定标准
- 汽车应急启动电源项目商业计划书写作范文
- 浅谈“低起点-小步子-勤练习-快反馈”教学策略
- 磁制冷技术的研究及应用
- 电缆桥架安装施工组织设计(完整版)
评论
0/150
提交评论