版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
安徽省阜阳市颍上县第二中学2025届数学高二上期末经典试题注意事项:1.答题前,考生先将自己的姓名、准考证号码填写清楚,将条形码准确粘贴在条形码区域内。2.答题时请按要求用笔。3.请按照题号顺序在答题卡各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试卷上答题无效。4.作图可先使用铅笔画出,确定后必须用黑色字迹的签字笔描黑。5.保持卡面清洁,不要折暴、不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.某家庭准备晚上在餐馆吃饭,他们查看了两个网站关于四家餐馆的好评率,如下表所示,考虑每家餐馆的总好评率,他们应选择()网站①评价人数网站①好评率网站②评价人数网站②好评率餐馆甲100095%100085%餐馆乙1000100%200080%餐馆丙100090%100090%餐馆丁200095%100085%A.餐馆甲 B.餐馆乙C.餐馆丙 D.餐馆丁2.据有关文献记载:我国古代一座层塔共挂了盏灯,且相邻两层中的下一层灯数比上一层灯数都多为常数盏,底层的灯数是顶层的倍,则塔的底层共有灯()A.盏 B.盏C.盏 D.盏3.已知圆,若存在过点的直线与圆C相交于不同两点A,B,且,则实数a的取值范围是()A. B.C. D.4.古希腊数学家阿基米德利用“逼近法”得到椭圆的面积除以圆周率等于椭圆的长半轴长与短半轴长的乘积,已知椭圆的面积为,、分别是的两个焦点,过的直线交于、两点,若的周长为,则的离心率为()A. B.C. D.5.倾斜角为45°,在y轴上的截距为-1的直线方程是()A.x-y+1=0 B.x-y-1=0C.x+y-1=0 D.x+y+1=06.在长方体中,,,则与平面所成的角的正弦值为()A. B.C. D.7.直线的倾斜角为()A.30° B.60°C.90° D.120°8.函数y=的最大值为Ae-1 B.eC.e2 D.9.的三个内角A,B,C所对的边分别为a,b,c,若,则()A. B.C. D.10.已知圆C的方程为,点P在圆C上,O是坐标原点,则的最小值为()A.3 B.C. D.11.有一组样本数据、、、,由这组数据得到新样本数据、、、,其中,为非零常数,则()A.两组样本数据的样本平均数相同 B.两组样本数据的样本标准差相同C.两组样本数据的样本中位数相同 D.两组样本数据的样本众数相同12.已知椭圆C:的一个焦点为(0,-2),则k的值为()A.5 B.3C.9 D.25二、填空题:本题共4小题,每小题5分,共20分。13.甲、乙两名运动员5场比赛得分的茎叶图如图所示,已知甲得分的极差为32,乙得分的平均值为24,则甲、乙两组数据的中位数是______.14.已知平面,过空间一定点P作一直线l,使得直线l与平面,所成的角都是30°,则这样的直线l有______条15.某几何体的三视图如图所示,则该几何体的体积为______.16.记为等差数列的前n项和.若,则__________三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(12分)已知函数.若函数有两个极值点,求实数的取值范围.18.(12分)某学校为了调查本校学生在一周内零食方面的支出情况,抽出了一个容量为的样本,分成四组,,,,其频率分布直方图如图所示,其中支出金额在元的学生有180人.(1)请求出的值;(2)如果采用分层抽样的方法从,内共抽取5人,然后从中选取2人参加学校的座谈会,求在,内正好各抽取一人的概率为多少.19.(12分)某企业为了解下属某部门对本企业职工的服务情况,随机访问50名职工,根据这50名职工对该部门的评分,绘制频率分布直方图(如图所示),其中样本数据分组区间为(1)求频率分布直方图中的值;(2)估计该企业的职工对该部门评分不低于80的概率;(3)从评分在的受访职工中,随机抽取2人,求此2人评分都在的概率.20.(12分)已知数列是等差数列,为其前n项和,,(1)求的通项公式;(2)若,求证:为等比数列21.(12分)已知在等差数列中,,(1)求数列的通项公式;(2)若的前n项和为,且,,求数列的前n项和22.(10分)已知椭圆的离心率为,短轴长为(1)求椭圆的标准方程;(2)已知,A,B分别为椭圆的左、右顶点,过点A作斜率为的直线交椭圆于另一点E,连接EP并延长交椭圆于另一点F,记直线BF的斜率为.若,求直线EF的方程
参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、D【解析】根据给定条件求出各餐馆总好评率,再比较大小作答.【详解】餐馆甲的总好评率为:,餐馆乙的总好评率为:,餐馆丙的好评率为:,餐馆丁的好评率为:,显然,所以餐馆丁的总好评率最高.故选:D2、C【解析】根据给定条件利用等差数列前n项和公式列式计算即可作答.【详解】依题意,层塔从上层到下层挂灯盏数依次排成一列可得等差数列,,于是得,解得,,所以塔的底层共有灯盏.故选:C3、D【解析】根据圆的割线定理,结合圆的性质进行求解即可.【详解】圆的圆心坐标为:,半径,由圆的割线定理可知:,显然有,或,因为,所以,于是有,因为,所以,而,或,所以,故选:D4、A【解析】本题首先可根据题意得出,然后根据的周长为得出,最后根据求出的值,即可求出的离心率.【详解】因为椭圆的面积为,所以长半轴长与短半轴长的乘积,因为的周长为,所以根据椭圆的定义易知,,,,则的离心率,故选:A.5、B【解析】由题意,,所以,即,故选B6、D【解析】过点作的垂线,垂足为,由线面垂直判定可知平面,则所求角即为,由长度关系求得即可.【详解】在平面内过点作的垂线,垂足为,连接.,,,平面,平面,的正弦值即为所求角的正弦值,,,.故选:D.7、B【解析】根据给定方程求出直线斜率,再利用斜率的定义列式计算得解.【详解】直线的斜率,设其倾斜角为,显然,则有,解得,直线的倾斜角为.故选:B8、A【解析】,所以函数在上递增,在上递减,所以函数的最大值为时,y==故选A点睛:研究函数最值主要根据导数研究函数的单调性,找到最值,分式求导公式要记熟9、D【解析】利用正弦定理边化角,角化边计算即可.【详解】由正弦定理边化角得,,再由正弦定理角化边得,即故选:D.10、B【解析】化简判断圆心和半径,利用圆的性质判断连接线段OC,交圆于点P时最小,再计算求值即得结果.【详解】化简得圆C的标准方程为,故圆心是,半径,则连接线段OC,交圆于点P时最小,因为原点到圆心的距离,故此时.故选:B.11、B【解析】利用平均数公式可判断A选项;利用标准差公式可判断B选项;利用中位数的定义可判断C选项;利用众数的定义可判断D选项.【详解】对于A选项,设数据、、、的平均数为,数据、、、的平均数为,则,A错;对于B选项,设数据、、、的标准差为,数据、、、的标准差为,,B对;对于C选项,设数据、、、中位数为,数据、、、的中位数为,不妨设,则,若为奇数,则,;若为偶数,则,.综上,,C错;对于D选项,设数据、、、的众数为,则数据、、、的众数为,D错.故选:B.12、A【解析】由题意可得焦点在轴上,由,可得k的值.【详解】∵椭圆的一个焦点是,∴,∴,故选:A二、填空题:本题共4小题,每小题5分,共20分。13、【解析】先由极差以及平均数得出,进而得出中位数.【详解】由可得,,,因为乙得分的平均值为24,所以,所以甲、乙两组数据的中位数是.故答案为:14、4【解析】设平面,在平面内作于点O,在平面内过点O作,设OM是的角平分线,过棱m上一点P作,则过点O在平面OMQP上存在2条直线l,使得直线l与OB、OA成,直线l与平面且与平面,所成的角都是30°,在的补角一侧也存在2条满足条件的直线l,由此可得答案.【详解】解:设平面,在平面内作于点O,在平面内过点O作,因为平面,所以,设OM是的角平分线,则,过棱m上一点P作,则过点O在平面OMQP上存在2条直线l,使得直线l与OB、OA成,此时直线l与平面且与平面,所成的角都是30°,同理,在的补角一侧也存在2条满足条件的直线l,所以这样的直线l有4条,故答案为:4.15、【解析】根据三视图还原几何体,由此计算出几何体的体积.【详解】根据三视图可知,该几何体为如图所示三棱锥,所以该几何体的体积为.故答案为:16、【解析】因为是等差数列,根据已知条件,求出公差,根据等差数列前项和,即可求得答案.【详解】是等差数列,且,设等差数列的公差根据等差数列通项公式:可得即:整理可得:解得:根据等差数列前项和公式:可得:.故答案:.【点睛】本题主要考查了求等差数列的前项和,解题关键是掌握等差数列的前项和公式,考查了分析能力和计算能力,属于基础题.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17、.【解析】求得,根据其在上有两个零点,结合零点存在性定理,对参数进行分类讨论,即可求得参数的取值范围.【详解】因为,所以,令,由题意可知在上有两个不同零点.又,若,则,故在上为增函数,这与在上有两个不同零点矛盾,故.当时,,为增函数,当时,,为减函数,故,因为在上有两个不同零点,故,即,即,取,,故在有一个零点,取,,令,,则,故在为减函数,因为,故,故,故在有一个零点,故在上有两个零点,故实数的取值范围为.【点睛】本题考察利用导数由函数的极值点个数求参数的范围,涉及零点存在定理,以及利用导数研究函数单调性,属综合困难题.18、(1);(2).【解析】(1)根据频率分布直方图求出[50,60]的频率,180除以该频率即为n的值;(2)将的样本编号为a、b,将的样本编号为A、B、C,利用列举法即可求概率.【小问1详解】由于支出金额在的频率为,∴.【小问2详解】采用分层抽样抽取的的人数比应为2:3,∴5人中有2人零食支出位于,记为、;有3人零食支出在,记为A、B、C.从这5人中选取2人有,,,,,,,,,,共10种情况;其中内正好各抽取一人有,,,,,,共6种情况.∴在内正好各抽取一人的概率为.19、(1)0.006;(2);(3).【解析】(1)在频率分布直方图中,由频率总和即所有矩形面积之和为,可求;(2)在频率分布直方图中先求出50名受访职工评分不低于80的频率为,由频率与概率关系可得该部门评分不低于80的概率的估计值为;(3)受访职工评分在[50,60)的有3人,记为,受访职工评分在[40,50)的有2人,记为,列出从这5人中选出两人所有基本事件,即可求相应的概率.【详解】(1)因为,所以(2)由所给频率分布直方图知,50名受访职工评分不低于80的频率为,所以该企业职工对该部门评分不低于80的概率的估计值为(3)受访职工评分在[50,60)的有:50×0.006×10=3(人),即为;受访职工评分在[40,50)的有:50×0.004×10=2(人),即为.从这5名受访职工中随机抽取2人,所有可能的结果共有10种,它们是又因为所抽取2人的评分都在[40,50)的结果有1种,即,故所求的概率为【点睛】本题考查频率分布直方图、概率与频率关系、古典概型,属中档题;利用频率分布直方图解题的时,注意其表达的意义,同时要理解频率是概率的估计值这一基础知识;在利用古典概型解题时,要注意列出所有的基本事件,千万不可出现重、漏的情况.20、(1)(2)证明见解析【解析】(1)由已知条件列出关于的方程组,解方程组求出,从而可求出的通项公式,(2)由(1)可得,然后利用等比数列的定义证明即可【小问1详解】设数列的公差为,则由,,得,解得,所以【小问2详解】证明:由(1)得,所以,()所以数列是以9为公比,27为首项的等比数列21、(1);(2).【解析】(1)根据给定条件求出数列的公差即可求解作答.(2)由已知条件求出数列的通项,再利用错位相减法计算作答.【小问1详解】等差数列中,,解得,则公差,所以数列的通项公式为:.【小问2详解】的前n项和为,,,则当时,,于是得,即,而,即,,因此,数列是首项为2,公比为2的等比数列,,由(1)知,,则,因此,,,所以数列的前n
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2024年度上海市高校教师资格证之高等教育法规强化训练试卷A卷附答案
- 灶环项目可行性实施报告
- 2024年夫妻出轨导致离婚具体合同书
- 烧烤叉项目评价分析报告
- 眼镜片加工设备项目可行性实施报告
- 2024年度公路建设施工协议范本版
- 2024年度建筑钢材购销合作协议版
- 印刷的收据簿相关项目实施方案
- 电钻的钻头相关项目实施方案
- 2024-2025学年山西三晋名校联考十月联合考试语文含答案
- 心理应激与应激障碍
- 标准太阳能光谱数据
- GB/T 42019-2022基于时间敏感技术的宽带工业总线AUTBUS系统架构与通信规范
- WS/T 83-1996肉毒梭菌食物中毒诊断标准及处理原则
- GB/T 24346-2009纺织品防霉性能的评价
- 必修二第七章第四节基本营养物质-糖类(说课)
- 新概念英语入门级AUnit3课件
- 报告厅会议室装饰工程施工方案
- 初一年级建队仪式校领导讲话稿
- 六年级上册数学课件-3 树叶中的比丨苏教版 (共17张PPT)
- 三年级中华优秀传统文化教案
评论
0/150
提交评论