版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2025届上海市嘉定区市级名校数学高一上期末经典试题考生须知:1.全卷分选择题和非选择题两部分,全部在答题纸上作答。选择题必须用2B铅笔填涂;非选择题的答案必须用黑色字迹的钢笔或答字笔写在“答题纸”相应位置上。2.请用黑色字迹的钢笔或答字笔在“答题纸”上先填写姓名和准考证号。3.保持卡面清洁,不要折叠,不要弄破、弄皱,在草稿纸、试题卷上答题无效。一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1.给出下列四个命题:①若,则对任意的非零向量,都有②若,,则③若,,则④对任意向量都有其中正确的命题个数是()A.3 B.2C.1 D.02.长方体中,,,E为中点,则异面直线与CE所成角为()A. B.C. D.3.将函数的图象先向左平移,然后将所得图象上所有的点的横坐标变为原来的倍(纵坐标不变),则所得到的图象对应的函数解析式为A. B.C. D.4.一正方体的六个面上用记号笔分别标记了一个字,已知其表面展开图如图所示,则在原正方体中,互为对面的是()A.西与楼,梦与游,红与记B.西与红,楼与游,梦与记C.西与楼,梦与记,红与游D.西与红,楼与记,梦与游5.已知H是球的直径AB上一点,AH:HB=1:2,AB⊥平面,H为垂足,截球所得截面的面积为,则球的表面积为A. B.C. D.6.已知为圆的两条互相垂直的弦,且垂足为,则四边形面积的最大值为()A.10 B.13C.15 D.207.若某商店将进货单价为6元的商品按每件10元出售,则每天可销售100件.现准备采用提高售价、减少进货量的方法来增加利润.已知这种商品的售价每提高1元,销售量就要减少10件,那么要保证该商品每天的利润在450元以上,售价的取值范围是()A. B.C. D.8.要得到函数的图像,需要将函数的图像()A.向左平移个单位 B.向右平移个单位C.向左平移个单位 D.向右平移个单位9.下列说法中,正确的是()A.若,则B.函数与函数是同一个函数C.设点是角终边上的一点,则D.幂函数的图象过点,则10.直线与圆交点的个数为A.2个 B.1个C.0个 D.不确定二、填空题:本大题共6小题,每小题5分,共30分。11.下列说法中,所有正确说法的序号是_____终边落在轴上的角的集合是;
函数图象与轴的一个交点是;函数在第一象限是增函数;若,则12.满足的集合的个数是______________13.给出下列说法:①和直线都相交的两条直线在同一个平面内;②三条两两相交的直线一定在同一个平面内;③有三个不同公共点的两个平面重合;④两两相交且不过同一点的四条直线共面其中正确说法的序号是______14.已知函数对于任意,都有成立,则___________15.已知向量,若,则实数的值为______16.已知,均为锐角,,,则的值为______三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17.计算下列各式的值:(1)(2)18.已知函数为偶函数(1)求a的值,并证明在上单调递增;(2)求满足的x的取值范围19.如图所示,已知长方形ABCD,AD=2CD=4,M、N分别为AD、BC的中点,将长方形ABCD沿MN折到MNFE位置,且使平面MNFE⊥平面ABCD(1)求证:直线CM⊥面DFN;(2)求点C到平面FDM的距离20.已知,且的最小正周期为.(1)求;(2)当时,求函数的最大值和最小值并求相应的值.21.已知函数.(1)求的定义域;(2)讨论的单调性;(3)求在区间[,2]上的值域.
参考答案一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1、D【解析】对于①,当两向量垂直时,才有;对于②,当两向量垂直时,有,但不一定成立;对于③,当,时,可以是任意向量;对于④,当向量都为零向量时,【详解】解:对于①,因为,,所以当两向量垂直时,才有,所以①错误;对于②,因为,,所以或,所以②错误;对于③,因为,所以,所以可以是任意向量,不一定是相等向量,所以③错误;对于④,当时,,所以④错误,故选:D2、C【解析】以为原点,为轴,为轴,为轴,建立空间直角坐标系,利用向量法能求出异面直线与所成角【详解】解:长方体中,,,为中点,以为原点,为轴,为轴,为轴,建立空间直角坐标系,,,,,,,,设异面直线与所成角为,则,,异面直线与所成角为故选:【点睛】本题考查异面直线所成角的余弦值的求法,考查空间中线线、线面、面面间的位置关系等基础知识,考查运算求解能力,属于中档题3、C【解析】把原函数解析式中的换成,得到y=sin2x+π6-π3的图象,再把的系数变成原来的【详解】将函数y=sin2x-π3的图象先向左平移,得到然后将所得图象上所有的点的横坐标变为原来的2倍(纵坐标不变),得到y=sin1故选:C4、B【解析】将该正方体折叠,即可判断对立面的字.【详解】以红为底,折叠正方体后,即可判断出:西与红,楼与游,梦与记互为对面.故选:B【点睛】本题考查了空间正方体的结构特征,展开图与正方体关系,属于基础题.5、D【解析】设球的半径为,根据题意知由与球心距离为的平面截球所得的截面圆的面积是,我们易求出截面圆的半径为1,根据球心距、截面圆半径、球半径构成直角三角形,满足勾股定理,我们易求出该球的半径,进而求出球的表面积【详解】设球的半径为,∵,∴平面与球心的距离为,∵截球所得截面的面积为,∴时,,故由得,∴,∴球的表面积,故选D【点睛】本题主要考查的知识点是球的表面积公式,若球的截面圆半径为,球心距为,球半径为,则球心距、截面圆半径、球半径构成直角三角形,满足勾股定理,属于中档题.6、B【解析】如图,作OP⊥AC于P,OQ⊥BD于Q,则|OP|2+|OQ|2=|OM|2=5,∴|AC|2+|BD|2=4(9-|OP|2)+4(9-|OQ|2)=52则|AC|·|BD|=,当时,|AC|·|BD|有最大值26,此时S四边形ABCD=|AC|·|BD|=×26=13,∴四边形ABCD面积的最大值为13故选B点睛:直线与圆的位置关系常用处理方法:(1)直线与圆相切处理时要利用圆心与切点连线垂直,构建直角三角形,进而利用勾股定理可以建立等量关系;(2)直线与圆相交,利用垂径定理也可以构建直角三角形;(3)直线与圆相离时,当过圆心作直线垂线时长度最小7、B【解析】根据题意列出函数关系式,建立不等式求解即可.【详解】设售价为,利润为,则,由题意,即,解得,即售价应定为元到元之间,故选:B.8、A【解析】直接按照三角函数图像的平移即可求解.【详解】,所以是左移个单位.故选:A9、D【解析】A选项,举出反例;B选项,两函数定义域不同;C选项,利用三角函数定义求解;D选项,待定系数法求出解析式,从而得到答案.【详解】A选项,当时,满足,而,故A错误;B选项,定义域为R,定义域为,两者不是同一个函数,B错误;C选项,,C错误;D选项,设,将代入得:,解得:,所以,D正确.故选:D10、A【解析】化为点斜式:,显然直线过定点,且定点在圆内∴直线与圆相交,故选A二、填空题:本大题共6小题,每小题5分,共30分。11、【解析】取值验证可判断;直接验证可判断;根据第一象限的概念可判断;由诱导公式化简可判断.【详解】中,取时,的终边在x轴上,故错误;中,当时,,故正确;中,第一象限角的集合为,显然在该范围内函数不单调;中,因为,所以,所以,故正确.故答案为:②④12、4【解析】利用集合的子集个数公式求解即可.【详解】∵,∴集合是集合的子集,∴集合的个数为,故答案为:.13、④【解析】利用正方体可判断①②的正误,利用公理3及其推论可判断③④的正误.【详解】如图,在正方体中,,,但是异面,故①错误.又交于点,但不共面,故②错误.如果两个平面有3个不同公共点,且它们共线,则这两个平面可以相交,故③错误.如图,因为,故共面于,因为,故,故即,而,故,故即即共面,故④正确.故答案为:④14、##【解析】由可得时,函数取最小值,由此可求.【详解】,其中,.因为,所以,,解得,,则故答案为:.15、;【解析】由题意得16、【解析】直接利用两角的和的正切关系式,即可求出结果【详解】已知,均锐角,,,则,所以:,故故答案为【点睛】本题主要考查了三角函数关系式的恒等变换,以及两角和的正切关系式的应用,其中解答中熟记两角和的正切的公式,准确运算是解答的关键,主要考查学生的运算能力和转化能力,属于基础题型三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17、(1)(2)【解析】(1)根据指数的运算性质进行求解即可;(2)根据对数的运算性质进行求解即可.【小问1详解】【小问2详解】18、(1);证明见解析(2)【解析】(1)由偶函数的定义解方程可得a=1,再由单调性的定义,结合指数函数的单调性可得结论;(2)由偶函数的性质:,结合(1)的结论,原不等式化为,再由绝对值不等式的解法可得所求解集.【小问1详解】解:由题意函数为偶函数,∴,即∴对任意恒成立,解得∴任取,则由,可得,∴,即,∴在上单调递增【小问2详解】由偶函数的对称性可得在上单调递减,∴,∴,解得,∴满足的x的取值范围是19、(1)见解析;(2)【解析】(1)推导出DN⊥CM,CM⊥FN,由此能证明CM⊥平面DFN.(2)以M为原点,MN为x轴,MA为y轴,ME为z轴,建立空间直角坐标系,利用向量法能求出点C到平面FDM的距离【详解】证明:(1)∵长方形ABCD,AD=2CD=4,M、N分别为AD、BC的中点,将长方形ABCD沿MN折到MNFE位置,且使平面MNFE⊥平面ABCD因为长方形ABCD,DC=CN=2,所以四边形DCNM是正方形,∴DN⊥CM,因为平面MNFE⊥平面ABCD,FN⊥MN,MNFE∩平面ABCD=MN,所以FN⊥平面DCNM,因为CM平面DCNM,所以CM⊥FN,又DN∩FN=N,∴CM⊥平面DFN(2)以M为原点,MN为x轴,MA为y轴,ME为z轴,建立空间直角坐标系,则C(2,-2,0),D(0,-2,0),F(2,0,2),M(0,0,0),=(2,-2,0),=(0,-2,0),=(2,0,2),设平面FDM的法向量=(x,y,z),则,取x=1,得=(1,0,-1),∴点C到平面FDM的距离d===【点睛】本题考查线面垂直的证明,考查点到平面的距离的求法,考查空间中线线、线面、面面间的位置关系等基础知识,考查运算求解能力,考查数形结合思想,是中档题20、(1);(2)时,,时,.【解析】(1)化简即得函数,再根据函数的周期求出,即得解;(2)由题得,再根据三角
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2024年企业股权增加协议样本版
- 电烤面包片机相关项目实施方案
- 磁头清洗带项目评价分析报告
- 真空打包机相关项目实施方案
- 建筑装饰工程施工质量验收预案
- 家电维修技术培训指南
- 城市轨道交通运营安全风险评估报告
- 在线教育平台使用教程
- 医疗保健信息化实施策略
- 区块链云存储服务投诉处理机制
- 数字电路说课(应用电子)课件
- (完整版)妇产科案例分析(含答案)
- 部编版小学道德与法治五年级上册单元检测试题全册含答案
- 《中医美容》期末考试题库(含答案)
- 定人定岗定责实施方案(共11篇)
- 医院酒精泄漏应急预案演练
- 非心脏手术围手术期心血管危险评估和管理
- 四年级数学上册第七单元整数四则混合运算第1课时不含括号的混合运算教案苏教版
- 维护国家安全 教案设计
- 非洲礼仪文化英语介绍
- 自发性气胸的护理
评论
0/150
提交评论