




版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
AuditDataAnalyticsChapter6Wherewearenow1.DataAnalytics2.DataPreparationandCleaning3.ModelingandEvaluation4.Visualization5.TheModernAudit6.AuditAnalytics7.KeyPerformanceIndicators8.FinancialStatementAnalyticsObjectivesLO6-1UnderstanddifferenttypesofanalysisforauditingandwhentousethemLO6-2UnderstandbasicdescriptiveauditanalysesLO6-3UnderstandmorecomplexstatisticalanalysesLO6-4UnderstandadvancedpredictiveandprescriptiveanalyticsWhenshouldyouuseauditdataanalytics?LO6-1DataAnalyticscanbeappliedtotheauditingfunctiontoincreasecoverageoftheaudit,whilereducingthetimetheauditordedicatestotheaudittasks.Naturerepresentswhyweperformauditprocedures.
Extentindicateshowmuchwecantest.
Timingtellsushowoftentheprocedureshouldberun.AuditDataAnalyticscanhelptoimprovethenature,timing,andextentofauditprocedures…IdentifytheProblem
Whatistheauditdepartmenttryingtoachieveusingdataanalytics?
Doyouneedtoanalyzethesegregationofdutiestotestwhetherinternalcontrolsareoperatingeffectively?
Areyoulookingforoperationalinefficiencies,suchasduplicatepaymentsofinvoices?
IdentifytheProblem(continued)
Areyoutryingtoidentifyphantomemployeesorvendors?
Areyoutryingtocollectevidencethatyouarecomplyingwithspecificregulations?
Areyoutryingtotestaccountbalancestotiethemtothefinancialstatements?MastertheData–Theauditdatastandardsprovideageneraloverviewofthebasicdataauditorswillevaluate,includingnotabletablesandfields.MastertheDataFieldNameDescriptionSales_Order_IDUniqueidentifierforeachsalesorder.ThisIDmayneedtobecreatedbyconcatenatingfields(e.g.,documentnumber,documenttype,andyear)touniquelyidentifyeachsalesorder.Sales_Order_Date Thedateofthesalesorder,regardlessofthedatetheorderisentered.Entered_By User_ID(fromUser_Listingfile)forpersonwhocreatedtherecord.Approved_By UserID(fromUser_Listingfile)forpersonwhoapprovedcustomermasteradditionsorchanges. Sales_Order_Amount_LocalSalesmonetaryamountrecordedinthelocalcurrency. ExcerptfromTable6-1PerformtheTestPlan–Commondataanalyticsprocedurescanbefoundincomputer-assistedauditingtechniques(CAATS)PerformtheTestPlanDescriptiveanalyticssummarizeactivityormasterdataonspecificattributes.
Diagnosticanalytics
lookforcorrelationsorpatternsofinterest.Predictiveanalytics
helpauditorsdiscoverhiddenpatternslinkedtoabnormalbehavior.Prescriptiveanalytics
makerecommendationsbasedonpastdata.Examplesofdescriptiveanalytics:Ageanalysis—groupsbalancesbydateSorting—identifieslargestorsmallestvaluesSummarystatistics—mean,median,min,max,count,sumSampling—randomandmonetaryunitExampleAuditProcedure:Analysisofnewaccountsopenedandemployeebonusesbyemployeeandlocation.Examplesofdiagnosticanalytics:Z-score—outlierdetectionBenford’slaw—identifiestransactionsoruserswithnontypicalactivitybasedonthedistributionoffirstdigitsDrill-down—exploresthedetailsbehindthevaluesClustering—groupsrecordsbynonobvioussimilaritiesExactandfuzzymatching—joinstablesandidentifiesplausiblerelationshipsSequencecheck—detectsgapsinrecordsandduplicatesentriesStratification—groupsdatabycategoriesExamplesofpredictiveanalytics:Regression—predictsspecificdependentvaluesbasedonindependentvariableinputsClassification—predictsacategoryforarecordProbability—usesarankscoretoevaluatethestrengthofclassificationSentimentanalysis—evaluatestextforpositiveornegativesentimenttopredictpositiveornegativeoutcomesExamplesofprescriptiveanalytics:What-ifanalysis—decisionsupportsystemsAppliedstatistics—predictsaspecificoutcomeorclassArtificialintelligence—usesobservationsofpastactionstopredictfutureactionsforsimilareventsExampleAuditProcedure:Analysisdeterminesprocedurestofollowwhennewaccountsareopenedforinactivecustomers,suchasrequiringapproval.Manyoftheseapproachescanbeautomatedwithgeneralizedauditsoftware,includingExcelandIDEA.AddressandRefineResultsDifferentmodelswillproducedifferentresults,forexample:-Highrisktransactions-Userswithconflictingroles-ExceptionstostandardprocedureAuditorswouldevaluatetheevidenceandcollaboratewithmanagementtoresolvetheissues.CommunicateInsights–Resultsmayappearinanauditdashboardandmaybeincludedinauditevidence.
TrackOutcomes–Evaluatedetectionandresolutionofexceptions.Periodicallyevaluatetheproceduresforeffectiveness.
Q.Compareandcontrastdescriptiveanddiagnosticanalytics.Howmightthesebeusedinanaudit?Whatdodescriptiveanalyticslooklike?LO6-2Descriptiveanalyticsareusefulforsortingandsummarizingdatatocreateabaselineorpointofreferenceformoreadvancedanalytics.Ageanalysisdeterminesthelikelihoodofpayment.BasicExcelformulasforevaluatingunpaidorders:Daysoutstanding=[Agingdate]–[Orderdate]Buckets=IF([Agingdate]–[Orderdate]<=30,[Amount],0)InIDEA:GotoAnalysis>Categorize>Agingandsetparameters.DaysoldTotal0-30154,32231-6074,53961-9042,200>9016,900Sortingvaluesbysmallestorlargestvaluesmayprovidemeaningfulinsight.InExcel:Home>FormatasTable,thenusedrop-downmenus.InIDEA:GotoData>Order>SortSummarystatisticsallowyoutoseetherelativesizeofavaluetoitspopulation.InExcel:Mean:=AVERAGE([range])Median:=MEDIAN([range])Minimum:=MIN([range])Maximum:=MAX([range])Count:=COUNT([range])Sum:=SUM([range])InIDEA:InthePropertiespaneontheright,clickFieldStatistics.Randomsamplingisusefulformanualevaluationofsourcedocuments.InExcel:EnableAnalysisToolPak.GotoData>Analysis>DataAnalysis.ClickSamplingandsetparameters.InIDEA:GotoAnalysis>Sample>Randomandsetparameters.Monetaryunitsamplingisusefulfortargetinglargertransactions.InExcel:Sortdata
andcalculatethecumulativebalance.Chooseasamplingintervalandsize.Godownthelist.InIDEA:GotoAnalysis>Sample>MonetaryUnit>Planandsetparameterstocalculatesamplesize.Q.Whattypeofdescriptiveanalyticswouldyouusetofindnegativenumbersthatwereenteredinerror?HowdoyouperformdiagnosticanalysesandBenford’sLaw? LO6-3Diagnosticanalyticsprovidemoredetailsintonotjusttherecords,butalsorecordsorgroupsofrecordsthathavesomestandoutfeatures.Z-scoresidentifyoutliersbycalculatingstandarddistancefromthemean.HighZ-scorevaluesrepresentoutliers.Ascoreabove3standarddeviationsisrare.InExcel:Calculatetheaverageandstandarddeviation.CalculatetheZ-score:=([value]–[mean])/[standarddeviation]Exhibit6-1Z-scoreshowstherelativepositionofapointofinterest.Benford’sLawidentifiesabnormaldistributionsoflargenumbers.InExcel:Extracttheleadingdigit=LEFT([Amount],1)Createafrequencydistribution=COUNTIF([Range],[Digit])(=[ActualCount]/SUM[ActualCount])Chartagainstexpected%Bonus:UsePivotTablestoidentifyindividualemployeeaveragesExhibit6-2Benford’slawpredictsthedistributionoffirstdigits.Benford’sLawidentifiesabnormaldistributionsoflargenumbers.InIDEA:GotoAnalysis>Explore>Benford’sLawExhibit6-2Benford’slawpredictsthedistributionoffirstdigits.Modernsoftwareallowsyoutodrilldownbyclickingthroughsummaryvaluestoviewtheunderlyingvalues.Exactandfuzzymatchingallowyoutojointablesoncompleteorpartialvalues.Examples:Exactmatch:Employee#14552=Employee#14552Fuzzymatch:234SecondAve
=234SecondAvenue
InExcel:DownloadandenabletheFuzzyLookupAdd-inforExcel.GotoFuzzyLookup>FuzzyLookupMatchtablesandcolumns.InIDEA:CurrentlyunavailablebydefaultSequencechecksareusedforlocatinggapsorduplicatetransactions.InExcel:=IF([secondvalue]–[firstvalue]=1,"","Missing")=SMALL(IF(ISNA(MATCH(ROW([range]),[range],0)),ROW([range])),ROW([Firstvalueinrange))Stratificationandclusteringareusedtogrouptransactionsorindividualsbysimilarcharacteristics.Q.Let’ssayacompanyhasninedivisions,andeachdivisionhasadifferentchecknumberbasedonitsdivision—soonestartswith“1,”anotherwith“2,”etc.WouldBenford’slawworkinthissituation?Howdoyouperformpredictiveandprescriptiveanalytics?LO6-4Predictiveandprescriptiveanalyticsprovidelessdeterministicoutputandmoreprobabilisticmodels,judgingthingslikelikelihoodandprobability.Regressionallowsanauditortopredictaspecificdependentvaluebasedonindependentvariableinputs.Classificationinauditingisgoingtobemainlyfocusedonriskassessment.Thepredictedclassesmaybelowriskorhighrisk.Whentalkingaboutclassification,thestrengthoftheclasscanbeimportanttotheauditor,especiallywhentryingtolimitthescope(e.g.,evaluateonlythe10riskiesttransactions).Sentimentanalysisenablesevaluationoftext(e.g.,annualreportore-mails)fordistributionsofwordsthatmaybeclassifiedaspositiveornegativeoutcomesortolookforpotentialbias.Appliedstatisticsincludeadditionalmixeddistributionsandnontraditionalstatisticsmayalsoprovideinsighttotheauditor.Artificialintelligencemodelsexpectedbehaviorbyevaluatingpastactionstakenbyauditorstopredictexpectedbehaviorinanunknowncase.Additionalanalysesareavailableinspecializ
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 北京2025年北京市总工会职工大学(北京市工会干部学院)事业单位招聘2名笔试历年参考题库附带答案详解
- 施工保密协议书二零二五年
- 家政保洁服务合同
- 二零二五版全新一件代发合同范例
- 坑塘租赁合同模板
- 二零二五版房屋买卖定金居间合同范例
- 设备租赁协议合同
- 简单转让股份协议书
- 外聘专家聘用协议
- 二零二五体育赛事赞助协议书范例
- LS/T 1201-2020磷化氢熏蒸技术规程
- 新概念英语第三册第60课-Too early and too late
- 高中化学培训《追寻化学教育的本源》
- 神经阻滞疗法在慢性疼痛治疗中的应用-课件
- 辽宁省大连市药品零售药店企业药房名单目录
- 《作文吹泡泡》-完整版课件
- 电化学储能保险发展报告
- 不合格产品统计表
- 《外科学》第七节 直肠癌
- DG-TJ 08-2002-2020 悬挑式脚手架安全技术标准 高质量清晰版
- Z世代消费态度洞察报告
评论
0/150
提交评论