2024届上海市宝山区上海大学市北附属中学高三下学期“一诊”模拟数学试题_第1页
2024届上海市宝山区上海大学市北附属中学高三下学期“一诊”模拟数学试题_第2页
2024届上海市宝山区上海大学市北附属中学高三下学期“一诊”模拟数学试题_第3页
2024届上海市宝山区上海大学市北附属中学高三下学期“一诊”模拟数学试题_第4页
2024届上海市宝山区上海大学市北附属中学高三下学期“一诊”模拟数学试题_第5页
已阅读5页,还剩12页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

2024届上海市宝山区上海大学市北附属中学高三下学期“一诊”模拟数学试题注意事项:1.答题前,考生先将自己的姓名、准考证号码填写清楚,将条形码准确粘贴在条形码区域内。2.答题时请按要求用笔。3.请按照题号顺序在答题卡各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试卷上答题无效。4.作图可先使用铅笔画出,确定后必须用黑色字迹的签字笔描黑。5.保持卡面清洁,不要折暴、不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.在中,“”是“”的()A.充分不必要条件 B.必要不充分条件 C.充要条件 D.既不充分也不必要条件2.已知是双曲线的左、右焦点,若点关于双曲线渐近线的对称点满足(为坐标原点),则双曲线的渐近线方程为()A. B. C. D.3.在展开式中的常数项为A.1 B.2 C.3 D.74.若θ是第二象限角且sinθ=,则=A. B. C. D.5.已知是过抛物线焦点的弦,是原点,则()A.-2 B.-4 C.3 D.-36.已知某几何体的三视图如图所示,其中正视图与侧视图是全等的直角三角形,则该几何体的各个面中,最大面的面积为()A.2 B.5 C. D.7.复数为纯虚数,则()A.i B.﹣2i C.2i D.﹣i8.执行如图所示的程序框图,则输出的()A.2 B.3 C. D.9.三棱柱中,底面边长和侧棱长都相等,,则异面直线与所成角的余弦值为()A. B. C. D.10.设函数,则函数的图像可能为()A. B. C. D.11.已知函数,存在实数,使得,则的最大值为()A. B. C. D.12.如果直线与圆相交,则点与圆C的位置关系是()A.点M在圆C上 B.点M在圆C外C.点M在圆C内 D.上述三种情况都有可能二、填空题:本题共4小题,每小题5分,共20分。13.正三棱柱的底面边长为2,侧棱长为,为中点,则三棱锥的体积为________.14.在平面直角坐标系xOy中,已知双曲线(a>0)的一条渐近线方程为,则a=_______.15.函数在区间内有且仅有两个零点,则实数的取值范围是_____.16.从分别写有1,2,3,4的4张卡片中随机抽取1张,放回后再随机抽取1张,则抽得的第一张卡片上的数不小于第二张卡片上的数的概率为__________.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(12分)在极坐标系中,已知曲线,.(1)求曲线、的直角坐标方程,并判断两曲线的形状;(2)若曲线、交于、两点,求两交点间的距离.18.(12分)已知中,,,是上一点.(1)若,求的长;(2)若,,求的值.19.(12分)如图,在四棱锥中,底面是矩形,是的中点,平面,且,.()求与平面所成角的正弦.()求二面角的余弦值.20.(12分)已知直线的参数方程为为参数),以坐标原点为极点,轴的正半轴为极轴建立极坐标系,曲线的极坐标方程为.(1)求直线的普通方程和曲线的直角坐标方程;(2)设点,直线与曲线交于两点,求的值.21.(12分)已知函数,不等式的解集为.(1)求实数,的值;(2)若,,,求证:.22.(10分)已知函数.(1)求的极值;(2)若,且,证明:.

参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、D【解析】

通过列举法可求解,如两角分别为时【详解】当时,,但,故充分条件推不出;当时,,但,故必要条件推不出;所以“”是“”的既不充分也不必要条件.故选:D.【点睛】本题考查命题的充分与必要条件判断,三角函数在解三角形中的具体应用,属于基础题2、B【解析】

先利用对称得,根据可得,由几何性质可得,即,从而解得渐近线方程.【详解】如图所示:由对称性可得:为的中点,且,所以,因为,所以,故而由几何性质可得,即,故渐近线方程为,故选B.【点睛】本题考查了点关于直线对称点的知识,考查了双曲线渐近线方程,由题意得出是解题的关键,属于中档题.3、D【解析】

求出展开项中的常数项及含的项,问题得解。【详解】展开项中的常数项及含的项分别为:,,所以展开式中的常数项为:.故选:D【点睛】本题主要考查了二项式定理中展开式的通项公式及转化思想,考查计算能力,属于基础题。4、B【解析】由θ是第二象限角且sinθ=知:,.所以.5、D【解析】

设,,设:,联立方程得到,计算得到答案.【详解】设,,故.易知直线斜率不为,设:,联立方程,得到,故,故.故选:.【点睛】本题考查了抛物线中的向量的数量积,设直线为可以简化运算,是解题的关键.6、D【解析】

根据三视图还原出几何体,找到最大面,再求面积.【详解】由三视图可知,该几何体是一个三棱锥,如图所示,将其放在一个长方体中,并记为三棱锥.,,,故最大面的面积为.选D.【点睛】本题主要考查三视图的识别,复杂的三视图还原为几何体时,一般借助长方体来实现.7、B【解析】

复数为纯虚数,则实部为0,虚部不为0,求出,即得.【详解】∵为纯虚数,∴,解得..故选:.【点睛】本题考查复数的分类,属于基础题.8、B【解析】

运行程序,依次进行循环,结合判断框,可得输出值.【详解】起始阶段有,,第一次循环后,,第二次循环后,,第三次循环后,,第四次循环后,,所有后面的循环具有周期性,周期为3,当时,再次循环输出的,,此时,循环结束,输出,故选:B【点睛】本题主要考查程序框图的相关知识,经过几次循环找出规律是关键,属于基础题型.9、B【解析】

设,,,根据向量线性运算法则可表示出和;分别求解出和,,根据向量夹角的求解方法求得,即可得所求角的余弦值.【详解】设棱长为1,,,由题意得:,,,又即异面直线与所成角的余弦值为:本题正确选项:【点睛】本题考查异面直线所成角的求解,关键是能够通过向量的线性运算、数量积运算将问题转化为向量夹角的求解问题.10、B【解析】

根据函数为偶函数排除,再计算排除得到答案.【详解】定义域为:,函数为偶函数,排除,排除故选【点睛】本题考查了函数图像,通过函数的单调性,奇偶性,特殊值排除选项是常用的技巧.11、A【解析】

画出分段函数图像,可得,由于,构造函数,利用导数研究单调性,分析最值,即得解.【详解】由于,,由于,令,,在↗,↘故.故选:A【点睛】本题考查了导数在函数性质探究中的应用,考查了学生数形结合,转化划归,综合分析,数学运算的能力,属于较难题.12、B【解析】

根据圆心到直线的距离小于半径可得满足的条件,利用与圆心的距离判断即可.【详解】直线与圆相交,圆心到直线的距离,即.也就是点到圆的圆心的距离大于半径.即点与圆的位置关系是点在圆外.故选:【点睛】本题主要考查直线与圆相交的性质,考查点到直线距离公式的应用,属于中档题.二、填空题:本题共4小题,每小题5分,共20分。13、【解析】

试题分析:因为正三棱柱的底面边长为,侧棱长为为中点,所以底面的面积为,到平面的距离为就是底面正三角形的高,所以三棱锥的体积为.考点:几何体的体积的计算.14、3【解析】

双曲线的焦点在轴上,渐近线为,结合渐近线方程为可求.【详解】因为双曲线(a>0)的渐近线为,且一条渐近线方程为,所以.故答案为:.【点睛】本题主要考查双曲线的渐近线,明确双曲线的焦点位置,写出双曲线的渐近线方程的对应形式是求解的关键,侧重考查数学运算的核心素养.15、【解析】

对函数零点问题等价转化,分离参数讨论交点个数,数形结合求解.【详解】由题:函数在区间内有且仅有两个零点,,等价于函数恰有两个公共点,作出大致图象:要有两个交点,即,所以.故答案为:【点睛】此题考查函数零点问题,根据函数零点个数求参数的取值范围,关键在于对函数零点问题恰当变形,等价转化,数形结合求解.16、【解析】

基本事件总数,抽得的第一张卡片上的数不小于第二张卡片上的数包含的基本事件有10种,由此能求出抽得的第一张卡片上的数不小于第二张卡片上的数的概率.【详解】从分别写有1,2,3,4的4张卡片中随机抽取1张,放回后再随机抽取1张,基本事件总数,抽得的第一张卡片上的数不小于第二张卡片上的数包含的基本事件有10种,分别为:,,,,,,,,,,则抽得的第一张卡片上的数不小于第二张卡片上的数的概率为.故答案为:【点睛】本题考查古典概型概率的求法,考查运算求解能力,求解时注意辨别概率的模型.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17、(1)表示一条直线,是圆心为,半径为的圆;(2).【解析】

(1)直接利用极坐标方程与直角坐标方程之间的转换关系可将曲线的方程化为直角坐标方程,进而可判断出曲线的形状,在曲线的方程两边同时乘以得,由可将曲线的方程化为直角坐标方程,由此可判断出曲线的形状;(2)由直线过圆的圆心,可得出为圆的一条直径,进而可得出.【详解】(1),则曲线的普通方程为,曲线表示一条直线;由,得,则曲线的直角坐标方程为,即.所以,曲线是圆心为,半径为的圆;(2)由(1)知,点在直线上,直线过圆的圆心.因此,是圆的直径,.【点睛】本题考查曲线的极坐标方程与直角坐标方程之间的转化,同时也考查了直线截圆所得弦长的计算,考查计算能力,属于基础题.18、(1)(2)【解析】

(1)运用三角形面积公式求出的长度,然后再运用余弦定理求出的长.(2)运用正弦定理分别表示出和,结合已知条件计算出结果.【详解】(1)由在中,由余弦定理可得(2)由已知得在中,由正弦定理可知在中,由正弦定理可知故【点睛】本题考查了正弦定理、三角形面积公式以及余弦定理,结合三角形熟练运用各公式是解题关键,此类题目是常考题型,能够运用公式进行边角互化,需要掌握解题方法.19、(1).(2).【解析】分析:(1)直接建立空间直角坐标系,然后求出面的法向量和已知线的向量,再结合向量的夹角公式求解即可;(2)先分别得出两个面的法向量,然后根据向量交角公式求解即可.详解:()∵是矩形,∴,又∵平面,∴,,即,,两两垂直,∴以为原点,,,分别为轴,轴,轴建立如图空间直角坐标系,由,,得,,,,,,则,,,设平面的一个法向量为,则,即,令,得,,∴,∴,故与平面所成角的正弦值为.()由()可得,设平面的一个法向量为,则,即,令,得,,∴,∴,故二面角的余弦值为.点睛:考查空间立体几何的线面角,二面角问题,一般直接建立坐标系,结合向量夹角公式求解即可,但要注意坐标的正确性,坐标错则结果必错,务必细心,属于中档题.20、(1)直线普通方程:,曲线直角坐标方程:;(2).【解析】

(1)消去直线参数方程中的参数即可得到其普通方程;将曲线极坐标方程化为,根据极坐标和直角坐标互化原则可得其直角坐标方程;(2)将直线参数方程代入曲线的直角坐标方程,根据参数的几何意义可知,利用韦达定理求得结果.【详解】(1)由直线参数方程消去可得普通方程为:曲线极坐标方程可化为:则曲线的直角坐标方程为:,即(2)将直线参数方程代入曲线的直角坐标方程,整理可得:设两点对应的参数分别为:,则,【点睛】本题考查极坐标与直角坐标的互化、参数方程与普通方程的互化、直线参数方程中参数的几何意义的应用;求解距离之和的关键是能够明确直线参数方程中参数的几何意义,利用韦达定理来进行求解.21、(1),.(2)见解析【解析】

(1)分三种情况讨论即可(2)将,的值代入,然后利用均值定理即可.【详解】解:(1)不等式可化为.即有或或.解得,或或.所以不等式的解集为,故,.(2)由(1)知,,即,由,得,,当且仅当,即,时等号成立.故,即.【点睛】考查绝对值不等式的解法以及用均值定理证明不等式,中档题.22、(1)极大值为;极小值为;(2)见解析【

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论