版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
学校________________班级____________姓名____________考场____________准考证号学校________________班级____________姓名____________考场____________准考证号…………密…………封…………线…………内…………不…………要…………答…………题…………第1页,共6页山西省晋中学市榆次区2024年数学九年级第一学期开学学业水平测试试题题号一二三四五总分得分批阅人A卷(100分)一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)1、(4分)如图,在中,,,,则点到的距离为()A. B. C. D.2、(4分)在数学活动课上,老师和同学们判断一个四边形门框是否为矩形,下面是某合作学习小组的4位同学拟定的方案,其中正确的是()A.测量对角线,看是否互相平分B.测量两组对边,看是否分别相等C.测量对角线,看是否相等D.测量对角线的交点到四个顶点的距离,看是否都相等3、(4分)关于直线l:y=kx+k(k≠0),下列说法不正确的是()A.点(0,k)在l上B.l经过定点(-1,0)C.当k>0时,y随x的增大而增大D.l经过第一、二、三象限4、(4分)下列给出的四边形中的度数之比,其中能够判定四边形是平行四边形的是()A.1:2:3:4 B.2:3:2:3 C.2:2:3:4 D.1:2:2:15、(4分)正方形的边长为,在其的对角线上取一点,使得,以为边作正方形,如图所示,若以为原点建立平面直角坐标系,点在轴正半轴上,点在轴的正半轴上,则点的坐标为()A. B. C. D.6、(4分)如图,将边长为的正方形绕点B逆时针旋转30°,那么图中点M的坐标为()A.(,1) B.(1,) C.(,) D.(,)7、(4分)下列说法中正确的是()A.对角线相等的四边形是矩形B.对角线互相垂直的四边形是菱形C.每一条边都相等且每一个角也都相等的四边形是正方形D.平行四边形的对角线相等8、(4分)已知关于的方程的两根互为倒数,则的值为()A. B. C. D.二、填空题(本大题共5个小题,每小题4分,共20分)9、(4分)某校四个绿化小组一天植树棵数分别是10、10、x、8,已知这组数据的众数与平均数相等,则这组数据的中位数是_____.10、(4分)如图,在中,和分别平分和,过点作,分别交于点,若,则线段的长为_______.11、(4分)如图,在矩形ABCD中,AB=4,BC,对角线AC、BD相交于点O,现将一个直角三角板OEF的直角顶点与O重合,再绕着O点转动三角板,并过点D作DH⊥OF于点H,连接AH.在转动的过程中,AH的最小值为_________.12、(4分)如图,在正方形ABCD中,E是CD边上的点,过点E作EF⊥BD于F,若EF=EC,则∠BCF的度数为______.13、(4分)如图,在矩形ABCD中,AD=4,E,F分别为边AB,CD上一动点,AE=CF,分别以DE,BF为对称轴翻折△ADE,△BCF,点A,C的对称点分别为P,Q.若点P,Q,E,F恰好在同一直线上,且PQ=1,则EF的长为_____.三、解答题(本大题共5个小题,共48分)14、(12分)现代互联网技术的广泛应用,催生了快递行业的高速发展,小明计划给朋友快递一部分物品,经了解有甲乙两家快递公司比较合适.甲公司表示:快递物品不超过1千克的,按每千克22元收费;超过1千克,超过的部分按每千克15元收费,乙公司表示:按每千克16元收费,另加包装费3元,设小明快递物品x千克.(1)根据题意,填写下表:快递物品重量(千克)0.5134…甲公司收费(元)22…乙公司收费(元)115167…(2)设甲快递公司收费y1元,乙快递公司收费y2元,分别写出y1,y2关于x的函数关系式;(3)当x>3时,小明应选择哪家快递公司更省钱?请说明理由.15、(8分)某学生食堂存煤45吨,用了5天后,由于改进设备,平均每天耗煤量降低为原来的一半,结果多烧了10天.求改进设备后平均每天耗煤多少吨?16、(8分)如图,反比例函数y=(x>0)的图象过格点(网格线的交点)P.(1)求反比例函数的解析式;(2)在图中用直尺和2B铅笔画出两个矩形(不写画法),要求每个矩形均需满足下列两个条件:①四个顶点均在格点上,且其中两个顶点分别是点O,点P;②矩形的面积等于k的值.17、(10分)计算:(1);(2)sin30°+cos30°•tan60°.18、(10分)我们定义:有一组对角相等而另一组对角不相等的凸四边形叫做等对角四边形.请解决下列问题:(1)已知:如图1,四边形ABCD是等对角四边形,∠A≠∠C,∠A=70°,∠B=75°,则∠C=°,∠D=°(2)在探究等对角四边形性质时:小红画了一个如图2所示的等对角四边形ABCD,其中,∠ABC=∠ADC,AB=AD,此时她发现CB=CD成立,请你证明该结论;(3)图①、图②均为4×4的正方形网格,线段AB、BC的端点均在网点上.按要求在图①、图②中以AB和BC为边各画一个等对角四边形ABCD.要求:四边形ABCD的顶点D在格点上,所画的两个四边形不全等.(4)已知:在等对角四边形ABCD中,∠DAB=60°,∠ABC=90°,AB=5,AD=4,求对角线AC的长.B卷(50分)一、填空题(本大题共5个小题,每小题4分,共20分)19、(4分)不改变分式的值,使分子、分母的第一项系数都是正数,则=_____.20、(4分)如图,若△DEF是由△ABC沿BC方向平移得到的,EF=5,EC=3,则平移的距离是_____.21、(4分)如图,在△ABC中,∠C=90°,AC=BC=,将△ABC绕点A顺时针方向旋转60°到△AB′C′的位置,连接C′B,则C′B=______22、(4分)函数,则当函数值y=8时,自变量x的值是_____.23、(4分)如图,是的斜边上的中线,,在上找一点,使得,连结并延长至,使得,连结,,则长为________.二、解答题(本大题共3个小题,共30分)24、(8分)如图,已知一次函数y=kx+b的图象经过A(﹣2,﹣1),B(1,3)两点,并且交x轴于点C,交y轴于点D.(1)求一次函数的解析式;(2)求点C和点D的坐标;(3)求△AOB的面积.25、(10分)由于受到手机更新换代的影响,某店经销的甲型号手机今年的售价比去年每台降价500元.如果卖出相同数量的手机,那么去年销售额为8万元,今年销售额只有6万元.(1)今年甲型号手机每台售价为多少元?(2)为了提高利润,该店计划购进乙型号手机销售,已知甲型号手机每台进价为1000元,乙型号手机每台进价为800元,预计用不多于1.84万元且不少于1.76万元的资金购进这两种手机共20台,请问有几种进货方案?26、(12分)如图,已知等边△ABC,点D在直线BC上,连接AD,作∠ADN=60°,直线DN交射线AB于点E,过点C作CF∥AB交直线DN于点F.(1)当点D在线段BC上,∠NDB为锐角时,如图①.①判断∠1与∠2的大小关系,并说明理由;②过点F作FM∥BC交射线AB于点M,求证:CF+BE=CD;(2)①当点D在线段BC的延长线上,∠NDB为锐角时,如图②,请直接写出线段CF,BE,CD之间的数量关系;②当点D在线段CB的延长线上,∠NDB为钝角或直角时,如图③,请直接写出线段CF,BE,CD之间的数量关系.
参考答案与详细解析一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)1、D【解析】
根据直角三角形的性质、勾股定理分别求出AB、BC,根据三角形的面积公式计算即可.【详解】解:设点C到AB的距离为h,
∵∠C=90°,∠A=30°,
∴AB=2BC,
由勾股定理得,AB2-BC2=AC2,即(2BC)2-BC2=22,
解得,BC=,
则AB=2BC=,
由三角形的面积公式得,,
解得,h=1,
故选:D.本题考查的是直角三角形的性质,掌握在直角三角形中,30°角所对的直角边等于斜边的一半是解题的关键.2、D【解析】
根据矩形的判定定理有:(1)有一个角是直角的平行四边形是矩形;(2)有三个角是直角的四边形是矩形;(3)对角线互相平分且相等的四边形是矩形.【详解】解:A、对角线是否相互平分,能判定平行四边形,故本选项错误;B、两组对边是否分别相等,能判定平行四边形,故本选项错误;C、对角线相等的四边形不一定是矩形,不能判定形状,故本选项错误;D、根据对角线相等且互相平分四边形是矩形,可知量出对角线的交点到四个顶点的距离,看是否相等,可判断是否是矩形.故本选项正确.故选:D.本题考查的是矩形的判定定理,牢记矩形的判定方法是解答本题的关键,难度较小.3、D【解析】A.当x=0时,y=k,即点(0,k)在l上,故此选项正确;B.当x=﹣1时,y=﹣k+k=0,此选项正确;C.当k>0时,y随x的增大而增大,此选项正确;D.不能确定l经过第一、二、三象限,此选项错误;故选D.4、B【解析】
根据平行四边形的对角相等即可判断.【详解】∵平行四边形的对角相等,∴的度数之比可以是2:3:2:3故选B此题主要考查平行四边形的性质,解题的关键是熟知平行四边形的对角相等.5、D【解析】
作辅助线,根据正方形对角线平分内角的性质可证明△AGH是等腰直角三角形,计算GH和BH的长,可解答.【详解】解:过G作GH⊥x轴于H,
∵四边形ABCD是正方形,
∴∠BAC=45°,
∵四边形AEFG是正方形,AE=AB=2,
∴∠EAG=90°,AG=2,
∴∠HAG=45°,∵∠AHG=90°,
∴AH=GH=,
∴G(,2+),
故选:D.本题考查了正方形的性质,等腰直角三角形的性质和判定等知识,掌握等腰直角三角形各边的关系是关键,理解坐标与图形性质.6、B【解析】
由正方形和旋转的性质得出AB=BC'=,∠BAM=∠BC'M=90°,证出Rt△ABM≌Rt△C'BM,得出∠1=∠2,求出∠1=∠2=30°,在Rt△ABM中,求出AM的长即可.【详解】解:∵四边形ABCD是正方形,∴AB=BC'=,∠BAM=∠BC'M=90°,在Rt△ABM和Rt△C'BM中,,∴Rt△ABM≌Rt△C'BM(HL),∴∠1=∠2,∵将边长为的正方形绕点B逆时针旋转30°,∴∠CBC'=30°,∴∠1=∠2=30°,在Rt△ABM中,AB=,∠1=30°,∴AB=AM=,∴AM=1,∴点M的坐标为(1,);故选B.本题考查了正方形的性质、旋转的性质、坐标与图形性质、全等三角形的判定与性质、直角三角形的性质等知识;熟练掌握旋转的性质和正方形的性质,证明三角形全等是解决问题的关键.7、C【解析】
根据矩形的判定、正方形的判定、和菱形的判定以及平行四边形的性质判断即可.【详解】解:A、对角线平分且相等的四边形是矩形,错误;B、对角线互相垂直平分的四边形是菱形,错误;C、每一条边都相等且每一个角也都相等的四边形是正方形,正确;D、矩形的对角线相等,错误;故选:C.此题考查正方形的判定,关键是根据矩形的判定、正方形的判定、和菱形的判定以及平行四边形的性质解答.8、C【解析】
设两根为x1,x2,根据当两根互为倒数时:x1x2=1,再根据根与系数的关系即可求解.【详解】解:设两根为x1,x2,∵关于的方程的两根互为倒数,∴x1x2=1,即2m-1=1,解得m=1.故选:C本题考查了根与系数的关系,属于基础题,关键掌握x1,x2是一元二次方程ax2+bx+c=0(a≠0)的两根则二、填空题(本大题共5个小题,每小题4分,共20分)9、1【解析】
根据这组数据的众数与平均数相等确定x的值,再根据中位数的定义求解即可.【详解】解:当x=8时,有两个众数,而平均数只有一个,不合题意舍去.当众数为1时,根据题意得(1+1+x+8)÷4=1,解得x=12,将这组数据从小到大的顺序排列8,1,1,12,处于中间位置的是1,1,所以这组数据的中位数是(1+1)÷2=1.故答案为1本题为统计题,考查平均数、众数与中位数的意义,解题时需要理解题意,分类讨论.10、5.【解析】
由BD为角平分线,利用角平分线的性质得到一对角相等,再由EF与BC平行,利用两直线平行内错角相等得到一对角相等,等量代换可得出∠EBD=∠EDB,利用等角对等边得到EB=ED,同理得到FC=FD,再由EF=ED+DF,等量代换可得证.【详解】证明:∵BD为∠ABC的平分线,∴∠EBD=∠CBD,又∵EF∥BC,∴∠EDB=∠CBD,∴∠EBD=∠EDB,∴EB=ED,同理FC=FD,又∵EF=ED+DF,∴EF=EB+FC=5.此题考查等腰三角形的判定与性质,平行线的性质,解题关键在于得出∠EBD=∠EDB11、1﹣1【解析】
取OD的中点G,过G作GP⊥AD于P,连接HG,AG,依据∠ADB=30°,可得PGDG=1,依据∠DHO=90°,可得点H在以OD为直径的⊙G上,再根据AH+HG≥AG,即可得到当点A,H,G三点共线,且点H在线段AG上时,AH最短,根据勾股定理求得AG的长,即可得出AH的最小值.【详解】如图,取OD的中点G,过G作GP⊥AD于P,连接HG,AG.∵AB=4,BC=4AD,∴BD8,∴BD=1AB,DO=4,HG=1,∴∠ADB=30°,∴PGDG=1,∴PD,AP=3.∵DH⊥OF,∴∠DHO=90°,∴点H在以OD为直径的⊙G上.∵AH+HG≥AG,∴当点A,H,G三点共线,且点H在线段AG上时,AH最短,此时,Rt△APG中,AG,∴AH=AG﹣HG=11,即AH的最小值为11.故答案为11.本题考查了圆和矩形的性质,勾股定理的综合运用,解决问题的关键是根据∠DHO=90°,得出点H在以OD为直径的⊙G上.12、67.5【解析】
由正方形的性质得到∠BDC=∠CBD=45°,求得DF=EF,∠FED=45°.根据等腰三角形的性质得到∠EFC=∠ECF,于是得到结论.【详解】解:∵四边形ABCD是正方形,
∴∠BDC=∠CBD=45°,
∵EF⊥BD,
∴△DFE是等腰直角三角形,
∴DF=EF,∠FED=45°,
∵EF=EC,
∴∠EFC=∠ECF,
∵∠FED=∠EFC+∠ECF,
∴∠ECF=22.5°,
∵∠BCD=90°,
∴∠BCF=67.5°,
故答案为:67.5°.本题考查了正方形的性质,等腰直角三角形的判定和性质,等腰三角形的性质,正确的识别图形是解题的关键.13、2或【解析】
过点E作,垂足为G,首先证明为等腰三角形,然后设,然后分两种情况求解:I.当QF与PE不重叠时,由翻折的性质可得到,则,II.当QF与PE重叠时,:EF=DF=2x﹣1,FG=x﹣1,然后在中,依据勾股定理列方程求解即可.【详解】解:I.当QF与PE不重叠时,如图所示:过点E作EG⊥DC,垂足为G.设AE=FC=x.由翻折的性质可知:∠AED=∠DEP,EP=AE=FC=QF=x,则EF=2x+1.∵AE∥DG,∴∠AED=∠EDF.∴∠DEP=∠EDF.∴EF=DF.∴GF=DF﹣DG=x+1.在Rt△EGF中,EF2=EG2+GF2,即(2x+1)2=42+(x+1)2,解得:x=2(负值已舍去).∴EF=2x+1=2×2+1=2.II.当QF与PE重叠时,备用图中,同法可得:EF=DF=2x﹣1,FG=x﹣1,在Rt△EFG中,∵EF2=EG2+FG2,∴(2x﹣1)2=42+(x﹣1)2,∴x=或﹣2(舍弃),∴EF=2x﹣1=故答案为:2或.本题主要考查的是翻折的性质、勾股定理的应用,依据勾股定理列出关于x的方程是解题的关键.三、解答题(本大题共5个小题,共48分)14、(1)11,19,52,1;(2);y2=16x+3;(3)当3<x<3时,小明应选择乙公司省钱;当x=3时,两家公司费用一样;当x>3,小明应选择甲公司省钱.【解析】
(1)根据甲、乙公司的收费方式,求出y值即可;(2)根据甲、乙公司的收费方式结合数量关系,找出y1、y2(元)与x(千克)之间的函数关系式;(3)x>3,分别求出y1>y2、y1=y2、y1<y2时x的取值范围,综上即可得出结论.【详解】解:(1)当x=0.5时,y甲=22×0.5=11;当x=1时,y乙=16×1+3=19;当x=3时,y甲=22+15×2=52;当x=3时,y甲=22+15×3=1.故答案为:11;19;52;1.(2)当0<x≤1时,y1=22x;当x>1时,y1=22+15(x-1)=15x+2.∴y2=16x+3(x>0);(3)当x>3时,当y1>y2时,有15x+2>16x+3,解得:x<3;当y2=y2时,有15x+2=16x+3,解得:x=3;当y1<y2时,有15x+2<16x+3,解得:x>3.∴当3<x<3时,小明应选择乙公司省钱;当x=3时,两家公司费用一样;当x>3,小明应选择甲公司省钱.本题考查了一次函数的应用,解题的关键是:(1)根据甲、乙公司的收费方式求出y值;(2)根据甲、乙公司的收费方式结合数量关系,找出、(元)与x(千克)之间的函数关系式;(3)分情况考虑>、=、<时x的取值范围.15、改进设备后平均每天耗煤1.5吨.【解析】
设改进后评价每天x吨,根据题意列出分式方程即可求解.【详解】解:设改进后评价每天x吨,,解得x=1.5.经检验,x=1.5是此分式方程的解.故故改进设备后平均每天耗煤1.5吨.此题主要考查分式方程的应用,解题的关键是根据题意找到等量关系进行求解.16、(1);(2)作图见解析.【解析】分析:(1)将P点坐标代入y=,利用待定系数法即可求出反比例函数的解析式;(2)根据矩形满足的两个条件画出符合要求的两个矩形即可.详解:(1)∵反比例函数y=(x>0)的图象过格点P(2,2),∴k=2×2=4,∴反比例函数的解析式为y=;(2)如图所示:矩形OAPB、矩形OCDP即为所求作的图形.点睛:本题考查了作图-应用与设计作图,反比例函数图象上点的坐标特征,待定系数法求反比例函数解析式,矩形的判定与性质,正确求出反比例函数的解析式是解题的关键.17、(1);(2)2【解析】试题分析:(1)根据二次根式的乘除法法则计算即可;(2)根据特殊角的锐角三角函数值计算即可.解:(1)原式;(2)原式.考点:实数的运算点评:计算题是中考必考题,一般难度不大,学生要特别慎重,尽量不在计算上失分.18、(1)140°,1°;(2)证明见解析;(3)见解析;(4)2或2.【解析】试题分析:(1)根据四边形ABCD是“等对角四边形”得出∠D=∠B=1°,根据多边形内角和定理求出∠C即可;
(2)连接BD,根据等边对等角得出∠ABD=∠ADB,求出∠CBD=∠CDB,根据等腰三角形的判定得出即可;
(3)根据等对角四边形的定义画出图形即可求解;
(4)分两种情况:①当∠ADC=∠ABC=90°时,延长AD,BC相交于点E,先用含30°角的直角三角形的性质求出AE,得出DE,再用三角函数求出CD,由勾股定理求出AC;
②当∠BCD=∠DAB=60°时,过点D作DM⊥AB于点M,DN⊥BC于点N,则∠AMD=90°,四边形BNDM是矩形,先求出AM、DM,再由矩形的性质得出DN=BM=3,BN=DM=2,求出CN、BC,根据勾股定理求出AC即可.试题解析:(1)解:∵四边形ABCD是“等对角四边形”,∠A≠∠C,∠A=70°,∠B=1°,∴∠D=∠B=1°,∴∠C=360°﹣1°﹣1°﹣70°=140°;(2)证明:如图2,连接BD,∵AB=AD,∴∠ABD=∠ADB,∵∠ABC=∠ADC,∴∠ABC﹣∠ABD=∠ADC﹣∠ADB,∴∠CBD=∠CDB,∴CB=CD;(3)如图所示:(4)解:分两种情况:①当∠ADC=∠ABC=90°时,延长AD,BC相交于点E,如图3所示:∵∠ABC=90°,∠DAB=60°,AB=5,∴∠E=30°,∴AE=2AB=10,∴DE=AE﹣AD=10﹣4═6,∵∠EDC=90°,∠E=30°,∴CD=2,∴AC=;②当∠BCD=∠DAB=60°时,过点D作DM⊥AB于点M,DN⊥BC于点N,如图4所示:则∠AMD=90°,四边形BNDM是矩形,∵∠DAB=60°,∴∠ADM=30°,∴AM=AD=2,∴DM=2,∴BM=AB﹣AM=5﹣2=3,∵四边形BNDM是矩形,∴DN=BM=3,BN=DM=2,∵∠BCD=60°,∴CN=,∴BC=CN+BN=3,∴AC=.综上所述:AC的长为或.故答案为:140,1.【点睛】四边形综合题目:考查了新定义、四边形内角和定理、等腰三角形的判定与性质、勾股定理、三角函数、矩形的判定与性质等知识;本题难度较大,综合性强,特别是(4)中,需要进行分类讨论,通过作辅助线运用三角函数和勾股定理才能得出结果.一、填空题(本大题共5个小题,每小题4分,共20分)19、【解析】
根据分式的基本性质即可求出答案.【详解】原式==,故答案为:本题考查分式的基本性质,分式的基本性质是分式的分子和分母同时乘以或除以同一个不为0的整式,分式的值不变;熟练掌握分式的基本性质是解题关键.20、1【解析】
平移的距离为线段BE的长求出BE即可解决问题;【详解】∵BC=EF=5,EC=3,∴BE=1,∴平移距离是1,故答案为:1.本题考查平移的性质,解题的关键是理解题意,灵活运用所学知识解决问题.21、【解析】如图,连接BB′,∵△ABC绕点A顺时针方向旋转60°得到△AB′C′,∴AB=AB′,∠BAB′=60°,∴△ABB′是等边三角形,∴AB=BB′,在△ABC′和△B′BC′中,,∴△ABC′≌△B′BC′(SSS),∴∠ABC′=∠B′BC′,延长BC′交AB′于D,则BD⊥AB′,∵∠C=90∘,AC=BC=,∴AB==2,∴BD=2×=,C′D=×2=1,∴BC′=BD−C′D=−1.故答案为:−1.点睛:本题考查了旋转的性质,全等三角形的判定与性质,等边三角形的判定与性质,等腰直角三角形的性质,作辅助线构造出全等三角形并求出BC′在等边三角形的高上是解题的关键,也是本题的难点.22、或4【解析】
把y=8直接代入函数即可求出自变量的值.【详解】把y=8直接代入函数,得:,∵,∴代入,得:x=4,所以自变量x的值为或4本题比较容易,考查求函数值.(1)当已知函数解析式时,求函数值就是求代数式的值;(2)函数值是唯一的,而对应的自变量可以是多个.23、1【解析】
根据直角三角形的性质求出DE,根据三角形中位线定理计算即可.【详解】解:∵DE是Rt△ABD的斜边AB上的中线,AB=12,∴DE=AB=6,∴EF=DE-DF=6-2=4,∵AF=CF,AE=EB,∴EF是三角形ABC的中位线,∴BC=2EF=1,故答案为:1.本题考查的是直角三角形的性质、三角形中位线定理,掌握在直角三角形中,斜边上的中线等于斜边的一半是解题的关键.二、解答题(本大题共3个小题,共30分)24、(1)y=x+;(2)C点坐标为(,0),D点坐标为(0,),(3).【解析】分析:(1)先把A点和B点坐标代入y=kx+b得到关于k、b的方程组,解方程组得到k、b的值,从而得到一次函数的解析式;(2)令x=0,y=0,代入y=x+即可确定C、D点坐标;(3)根据三角形面积公式和△AOB的面积=S△AOD+S△BOD进行计算即可.详解:(1)把A(-2,-1),B(1,3)代入y=kx+b得,解得,.所以一次函数解析式为y=x+;(2)令y=0,则0=x+,解得x=-,所以C点的坐标为(-,0),把x=0代入y=x+得y=,所以D点坐标为(0,),(3)△AOB的面积=S△AOD+S△BOD=××2+××1=.点睛:本题考查了待定系数法求一次函数解析式:①先设出函数的一般形式,如求一次函数的解析式时,先设y=kx+b;②将自变量x的值及与它对应的函数值y的值代入所设的解析式,得到关于待定系数的方程或方程组;③解方程或方程组,求出待定系数的值,进而写出函数解析式.25、(1)今年甲型号手机每台售价为1元;(2)共有5种进货方案.【解析】分析:(1)先设今年甲型号手机每台售价为x元,根据题意列出方程,解出x的值,再进行检验,即可得出答案;(2)先设购进甲型号手机m台,根据题意列出不等式组,求出m的取值范围,即可得出进货方案.详解:(1)设今年甲型号手机每台售价为x元,由题意得,解得x=1.经检验x=1是方程的解.故今年甲型号手机每台售价为1元.(2)设购进甲型号手机m台,由题意得,17600≤1000m+800(20-m)≤18400,解得8≤m≤2.因为m只能取整数,所以m取8、9、10、11、2,共有5种进货方案.点睛:此题考查了一元一次不等式组的应用,要能根据题意列出不等式组,关键是根据不等式组的解集求出所有的进货方案,注意解分式方程要检验,是一道实际问题.26、(1)①∠1=∠2,理由见解析,②证明见解析;(2)①BE=CD+CF,②CF=CD+BE.【解析】
(1)①由等边三角形的性质和∠
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 个人专属授权代理协议(2024年版)版
- 10吃饭有讲究(说课稿)-2023-2024学年道德与法治一年级上册统编版
- 医院骨脊柱科提升服务品质改善就医感受
- 2024煤矿安全生产管理委托合同
- 福建省南平市渭田中学2020年高三物理联考试题含解析
- 2024版乳胶漆购销合同
- 2024戏曲虚拟现实演出技术合作合同范本3篇
- 2024民营医院员工合同
- 2024年股权退出协议:合作社股份转让规定
- 旅游新篇章模板
- 2024-2025学年安徽省六安市金安区三上数学期末调研试题含解析
- ISO 56001-2024《创新管理体系-要求》专业解读与应用实践指导材料之10:“5领导作用-5.4创新文化”(雷泽佳编制-2025B0)
- 《kdigo专家共识:补体系统在肾脏疾病的作用》解读
- 生产调度员岗位面试题及答案(经典版)
- 交通运输安全生产管理规范
- 2024年期货居间业务代理合同范本2篇
- 2024-2025学年上学期杭州初中英语九年级期末试卷
- 网络与信息安全管理组织机构设置及工作职责
- 医院后勤节能降耗工作计划
- 电力行业 电力施工组织设计(施工方案)
- 查对制度 课件
评论
0/150
提交评论