山东省青岛市平度实验2024-2025学年数学九年级第一学期开学经典试题【含答案】_第1页
山东省青岛市平度实验2024-2025学年数学九年级第一学期开学经典试题【含答案】_第2页
山东省青岛市平度实验2024-2025学年数学九年级第一学期开学经典试题【含答案】_第3页
山东省青岛市平度实验2024-2025学年数学九年级第一学期开学经典试题【含答案】_第4页
山东省青岛市平度实验2024-2025学年数学九年级第一学期开学经典试题【含答案】_第5页
已阅读5页,还剩21页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

学校________________班级____________姓名____________考场____________准考证号学校________________班级____________姓名____________考场____________准考证号…………密…………封…………线…………内…………不…………要…………答…………题…………第1页,共7页山东省青岛市平度实验2024-2025学年数学九年级第一学期开学经典试题题号一二三四五总分得分A卷(100分)一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)1、(4分)如图,在△ABC中,AB=8,∠C=90°,∠A=30°,DE是中位线,则DE的长为()A.2 B.3 C.4 D.22、(4分)如图,在平行四边形ABCD中,∠B=60°,将△ABC沿对角线AC折叠,点B的对应点落在点E处,且点B,A,E在一条直线上,CE交AD于点F,则图中等边三角形共有()A.4个 B.3个 C.2个 D.1个3、(4分)下列四边形中,不属于轴对称图形的是()A.平行四边形 B.矩形 C.菱形 D.正方形4、(4分)关于特殊四边形对角线的性质,矩形具备而平行四边形不一定具备的是()A.对角线互相平分 B.对角线互相垂直C.对角线相等 D.对角线平分一组对角5、(4分)均匀的向一个容器内注水,在注水过程中,水面高度与时间的函数关系如图所示,则该容器是下列中的()A. B. C. D.6、(4分)下列各组数是勾股数的是()A.6,7,8 B.1,,2C.5,4,3 D.0.3,0.4,0.57、(4分)如图,是射线上一点,过作轴于点,以为边在其右侧作正方形,过的双曲线交边于点,则的值为A. B. C. D.18、(4分)下列图案既是轴对称图形,又是中心对称图形的是()A.4个 B.3个 C.2个 D.1个二、填空题(本大题共5个小题,每小题4分,共20分)9、(4分)要使在实数范围内有意义,a应当满足的条件是_____.10、(4分)将正比例函数y=3x的图象向下平移11个单位长度后,所得函数图象的解析式为______.11、(4分)分解因式___________12、(4分)如图,在矩形ABCD中,E、F、G、H分别是四条边的中点,HF=2,EG=4,则四边形EFGH的面积为____________.13、(4分)如图,在△MBN中,已知:BM=6,BN=7,MN=10,点AC,D分别是MB,NB,MN的中点,则四边形ABCD的周长是_____.三、解答题(本大题共5个小题,共48分)14、(12分)1号探测气球从海拔5m处出发,以1m/min的速度上升.与此同时,2号探测气球从海拔15m处出发,以0.5m/min的速度上升.两个气球都匀速上升了50min.设气球上升时间为x(x≥0).(Ⅰ)根据题意,填写下表上升时间/min1030…x1号探测气球所在位置的海拔/m15…2号探测气球所在位置的海拔/m30…(Ⅱ)在某时刻两个气球能否位于同一高度?如果能,这时气球上升了多长时间?位于什么高度?如果不能,请说明理由.(Ⅲ)当0≤x≤50时,两个气球所在位置的海拔最多相差多少米?15、(8分)某学校八年级学生举行朗诵比赛,全年级学生都参加,学校对表现优异的学生进行表彰,设置—、二、三等奖和进步奖共四个奖项,赛后将八年级(1)班的获奖情况绘制成如图所示的两幅不完整的统计图,请报据图中的信息,解答下列问题:(1)八年级(1)班共有名学生;(2)将条形图补充完整;在扇形统计图中,“二等奖”对应的扇形的圆心角度数;(3)如果该八年级共有800名学生,请估计荣获一、二、三等奖的学生共有多少名.16、(8分)直线与轴、轴分別交于、两点,是的中点,是线段上一点.(1)求点、的坐标;(2)若四边形是菱形,如图1,求的面积;(3)若四边形是平行四边形,如图2,设点的横坐标为,的面积为,求关于的函数关系式.17、(10分)为了倡导“节约用水,从我做起”,南沙区政府决定对区直属机关300户家庭的用水情况作一次调查,区政府调查小组随机抽查了其中50户家庭一年的月平均用水量(单位:吨),调查中发现每户用水量均在10﹣14吨/月范围,并将调查结果制成了如图所示的条形统计图.(1)请将条形统计图补充完整;(2)这50户家庭月用水量的平均数是,众数是,中位数是;(3)根据样本数据,估计南沙区直属机关300户家庭中月平均用水量不超过12吨的约有多少户?18、(10分)综合与实践如图,为等腰直角三角形,,点为斜边的中点,是直角三角形,.保持不动,将沿射线向左平移,平移过程中点始终在射线上,且保持直线于点,直线于点.(1)如图1,当点与点重合时,与的数量关系是__________.(2)如图2,当点在线段上时,猜想与有怎样的数量关系与位置关系,并对你的猜想结果给予证明;(3)如图3,当点在的延长线上时,连接,若,则的长为__________.B卷(50分)一、填空题(本大题共5个小题,每小题4分,共20分)19、(4分)如图,在中,,,,为边上一动点,于,于,为的中点,则的最小值为________.20、(4分)化简:__________.21、(4分)若,则m-n的值为_____.22、(4分)若函数y=2x+b经过点(1,3),则b=_________.23、(4分)甲、乙两车分别从A、B两地同时出发,相向行驶,已知甲车的速度大于乙车的速度,甲车到达B地后马上以另一速度原路返回A地(掉头的时间忽略不计),乙车到达A地以后即停在地等待甲车.如图所示为甲乙两车间的距离y(千米)与甲车的行驶时间t(小时)之间的函数图象,则当乙车到达A地的时候,甲车与A地的距离为_____千米.二、解答题(本大题共3个小题,共30分)24、(8分)如图,平面直角坐标系内,小正方形网格的边长为1个单位长度,的三个顶点的坐标分别为.(1)画出关于轴的对称图形,并写出其顶点坐标;(2)画出将先向下平移4个单位,再向右平移3单位得到的,并写出其顶点坐标.25、(10分)某校为了解八年级学生课外阅读情况,随机抽取20名学生平均每周用于课外阅读读的时间(单位:),过程如下:(收集数据)30608150401101301469010060811201407081102010081(整理数据)课外阅读时间等级人数38(分析数据)平均数中位数众数80请根据以上提供的信息,解答下列问题:(1)填空:______,______,______,______;(2)如果每周用于课外读的时间不少于为达标,该校八年级现有学生200人,估计八年级达标的学生有多少人?26、(12分)如图:在△ABC中,点E,F分别是BA,BC边的中点,过点A作AD∥BC交FE的延长线于点D,连接DB,DC.(1)求证:四边形ADFC是平行四边形;(2)若∠BDC=90°,求证:CD平分∠ACB;(3)在(2)的条件下,若BD=DC=6,求AB的长.

参考答案与详细解析一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)1、A【解析】

先由含30°角的直角三角形的性质,得出BC的长,再由三角形的中位线定理得出DE的长即可.【详解】解:∵∠C=90°,∠A=30°,∴BC=AB=4,又∵DE是中位线,∴DE=BC=1.故选:A.本题考查了三角形的中位线定理,解答本题的关键是掌握含30°角的直角三角形的性质及三角形的中位线定理.2、B【解析】分析:根据折叠的性质可得∠E=∠B=60°,进而可证明△BEC是等边三角形,再根据平行四边形的性质可得:AD∥BC,所以可得∠EAF=60°,进而可证明△EFA是等边三角形,由等边三角形的性质可得∠EFA=∠DFC=60°,又因为∠D=∠B=60°,进而可证明△DFC是等边三角形,问题得解.详解:∵将△ABC沿对角线AC折叠,点B的对应点落在点E处,∴∠E=∠B=60°,∴△BEC是等边三角形,∵四边形ABCD是平行四边形,∴AD∥BC,∠D=∠B=60°,∴∠B=∠EAF=60°,∴△EFA是等边三角形,∵∠EFA=∠DFC=60°,∠D=∠B=60°,∴△DFC是等边三角形,∴图中等边三角形共有3个,故选B.点睛:本题考查了平行四边形的性质、折叠的性质以及等边三角形的判定和性质,解题的关键是熟记等边三角形的各种判定方法特别是经常用到的判定方法:三个角都相等的三角形是等边三角形.3、A【解析】

根据轴对称图形的定义:轴对称图形,是指在平面内沿一条直线折叠,直线两旁的部分能够完全重合的图形,即可判定平行四边形不是轴对称图形,矩形、菱形、正方形都是.【详解】根据轴对称图形的定义,可得A选项,平行四边形不符合轴对称图形定义;B选项,矩形符合定义,是轴对称图形;C选项,菱形符合定义,是轴对称图形;D选项,正方形符合定义,是轴对称图形;故答案为A.此题主要考查轴对称图形的理解,熟练掌握,即可解题.4、C【解析】

由矩形的对角线性质和平行四边形的对角线性质即可得出结论.【详解】解:矩形的对角线互相平分且相等,平行四边形的对角线互相平分,但不一定相等,∴矩形具备而平行四边形不一定具备的是对角线相等.故选C.本题考查了矩形的性质、平行四边形的性质;熟记矩形和平行四边形的性质是解题的关键.5、D【解析】

由函数图象可得容器形状不是均匀物体分析判断,由图象及容积可求解.【详解】根据图象折线可知是正比例函数和一次函数的函数关系的大致图象;切斜程度(即斜率)可以反映水面升高的速度;因为D几何体下面的圆柱体的底圆面积比上面圆柱体的底圆面积小,所以在均匀注水的前提下是先快后慢;故选D.此题主要考查了函数图象,解决本题的关键是根据用的时间长短来判断相应的函数图象.6、C【解析】

欲求证是否为勾股数,这里给出三边的长,只要验证即可.【详解】解:、,故此选项错误;、不是整数,故此选项错误;、,故此选项正确;、0.3,0.4,0.5,勾股数为正整数,故此选项错误.故选:.本题考查了勾股数的概念,一般是指能够构成直角三角形三条边的三个正整数.验证两条较小边的平方和与最大边的平方之间的关系,从而作出判断.7、A【解析】

设点A的横坐标为m(m>0),则点B的坐标为(m,0),把x=m代入得到点A的坐标,结合正方形的性质,得到点C,点D和点E的横坐标,把点A的坐标代入反比例函数,得到关于m的k的值,把点E的横坐标代入反比例函数的解析式,得到点E的纵坐标,求出线段DE和线段EC的长度,即可得到答案.【详解】解:设点A的横坐标为m(m>0),则点B的坐标为(m,0),把x=m代入,得.则点A的坐标为:(m,),线段AB的长度为,点D的纵坐标为.∵点A在反比例函数上,∴即反比例函数的解析式为:∵四边形ABCD为正方形,∴四边形的边长为.∴点C、点D、点E的横坐标为:把x=代入得:.∴点E的纵坐标为:,∴CE=,DE=,∴.故选择:A.本题考查了反比例函数和一次函数的结合,解题的关键是找到反比例函数与一次函数的交点坐标,结合正方形性质找到解题的突破口.8、B【解析】

轴对称图形的定义:如果一个图形沿一条直线折叠,直线两旁的部分能够互相重合,这个图形叫做轴对称图形;中心对称图形的定义:一个图形绕一点旋转180°后能够与原图形完全重合即是中心对称图形.【详解】解:选项B只是轴对称图形,其它三个均既是轴对称图形,又是中心对称图形,故选B.本题考查轴对称图形与中心对称图形的定义,本题属于基础应用题,只需学生熟练掌握轴对称图形与中心对称图形的定义,即可完成.二、填空题(本大题共5个小题,每小题4分,共20分)9、a⩽3.【解析】

根据二次根式有意义的条件列出关于a的不等式,求出a的取值范围即可.【详解】∵在实数范围内有意义,∴3−a⩾0,解得a⩽3.故答案为:a⩽3.此题考查二次根式有意义的条件,解题关键在于掌握其有意义的条件.10、【解析】

根据一次函数的上下平移规则:“上加下减”求解即可【详解】解:将正比例函数y=3x的图象向下平移个单位长度,所得的函数解析式为.故答案为:.本题考查的是一次函数的图象与几何变换,熟知一次函数图象变换的法则是解答此题的关键.11、【解析】

原式提取公因式,再利用完全平方公式分解即可.【详解】原式=2x(y2+2y+1)=2x(y+1)2,故答案为2x(y+1)2此题考查了提公因式法与公式法的综合运用,熟练掌握因式分解的方法是解本题的关键.12、4【解析】

根据题意可证明四边形EFGH为菱形,故可求出面积.【详解】∵四边形ABCD是矩形,∴AB=CD,AD=BC,∠A=∠B=∠C=∠D=90°,∵E、F、G、H分别是四条边的中点,∴AE=DG=BE=CG,AH=DH=BF=CF,∴△AEH≌△DGH≌△BEF≌△CGF(SAS),∴EH=EF=FG=GH,∴四边形EFGH是菱形,∵HF=2,EG=4,∴四边形EFGH的面积为HF·EG=×2×4=4.此题主要考查菱形的判定与面积求法,解题的关键是熟知特殊平行四边形的性质与判定定理.13、13【解析】

根据中位线性质可以推出CD∥AB,AD∥BC,可得四边形ABCD为平行四边形,由中点可得四边形ABCD的周长【详解】∵点A,C,D分别是MB,NB,MN的中点,∴CD∥AB,AD∥BC,∴四边形ABCD为平行四边形,∴AB=CD,AD=BC.∵BM=6,BN=7,点A,C分别是MB,NB的中点,∴AB=3,BC=3.5,∴四边形ABCD的周长=(AB+BC)×2=(3+3.5)×2=13.故答案为13本题考查了中位线的性质,以及平行四边形的判定及性质,掌握中位线的性质及平行四边形的性质是解题的关键.三、解答题(本大题共5个小题,共48分)14、(1)35;;30;;(2)此时气球上升了20min,都位于海拔25m的高度;(3)当时,y最大值为15.【解析】

(Ⅰ)根据距离=速度×时间,分别计算即可得答案;(Ⅱ)根据上升的高度相同列方程可求出x的值,进而可求出两个气球所在高度;(Ⅲ)设两个气球在同一时刻所在的位置的海拔相差m,由(Ⅱ)可知x=20时,两气球所在高度相同,当0≤x<20时,y=-0.5x+10,当20<x≤50时,y=0.5x-10,根据一次函数的性质分别求出最大值,比较即可得答案.【详解】(1)30×1+5=35,x+5,10×0.5+15=20,0.5x+15,故答案为:35;;20;(2)两个气球能位于同一高度.根据题意,,解得,∴.答:能位于同一高度,此时气球上升了20min,都位于海拔25m的高度.(3)设两个气球在同一时刻所在的位置的海拔相差ym由(Ⅱ)可知x=20时,两气球所在高度相同,∴①当0≤x<20时,由题意,可知1号探测气球所在位置始终低于2号气球,则.∵-0.5<0,∴y随x的增大而减小,∴当时,y取得最大值10.②当20<x≤50时,由题意,可知1号探测气球所在位置始终高于2号气球,则.∵0.5>0,∴y随x的增大而增大,∴当时,y取得最大值15.综上,当时,y最大值为15.答:两个气球所在位置的海拔最多相差15m.本题考查一次函数的应用,根据题意,得出函数关系式并熟练掌握一次函数的性质是解题关键.15、(1)50;(2)见解析;57.6°;(3)368.【解析】

(1)根据“不得奖”人数及其百分比可得总人数;(2)总人数乘以一等奖所占百分比可得其人数,补全图形,根据各项目百分比之和等于1求得二等奖所占百分比,再乘以360°即可得;(3)用总人数乘以荣获一、二、三等奖的学生占总人数的百分比即可.【详解】解:(1)八年级(1)班共有=50(2)获一等奖人数为:50×10%=5(人),补全图形如下:∵获“二等奖”人数所长百分比为1−50%−10%−20%−4%=16%,“二等奖”对应的扇形的圆心角度数是×16%=57.6,(3)(名)此题考查扇形统计图,条形统计图,用样本估计总体,解题关键在于看懂图中数据16、(1),;(2);(3)当时,;当时,【解析】

(1)当x=0时,y=4,当y=0时,x=4,即可求点A,点B坐标;

(2)过点D作DH⊥BC于点H,由锐角三角函数可求∠ABO=60°,由菱形的性质可得OC=OD=DE=2,可证△BCD是等边三角形,可得BD=2,可求点D坐标,即可求△AOE的面积;

(3)分两种情况讨论,利用平行四边形的性质和三角形面积公式可求解.【详解】解:(1)∵直线y=-x+4与x轴、y轴分别交于A、B两点,

∴当x=0时,y=4,

当y=0时,x=4

∴点A(4,0),点B(0,4)

(2)如图1,过点D作DH⊥BC于点H,,∴tan∠ABO=为的中点,四边形为菱形,为等边三角形∴BD=2∵DH⊥BC,∠ABO=60°

∴BH=1,HD=BH=

∴当x=时,y=3

∴D(,3)

∴S△AOE=×4×(3-2)=2(3)由是线段上一点,设四边形是平行四边形当,即时当,即时本题是一次函数综合题,考查了一次函数的应用,菱形的性质,平行四边形的性质,利用分类讨论思想解决问题是本题的关键.17、(1)补图见解析;(2)11.6,11,11;()210户.【解析】试题分析:(1)利用总户数减去其他的即可得出答案,再补全即可;(2)利用众数,中位数以及平均数的公式进行计算即可;(3)根据样本中不超过12吨的户数,再估计300户家庭中月平均用水量不超过12吨的户数即可.解:(1)根据条形图可得出:平均用水11吨的用户为:50﹣10﹣5﹣10﹣5=20(户),如图所示:(2)这50个样本数据的平均数是11.6,众数是11,中位数是11;故答案为;11.6,11,11;(3)样本中不超过12吨的有10+20+5=35(户),∴广州市直机关300户家庭中月平均用水量不超过12吨的约有:300×=210(户).点评:本题考查了读统计图的能力和利用统计图获取信息的能力;利用统计图获取信息时,必须认真观察、分析、研究统计图,才能作出正确的判断和解决问题.也考查了众数、中位数的统计意义.找中位数要把数据按从小到大的顺序排列,位于最中间的一个数或两个数的平均数为中位数;众数是一组数据中出现次数最多的数据,注意众数可以不止一个.18、(1);(2),,见解析;(3)【解析】

(1)根据等腰直角三角形的性质证明OA=OC,∠A=∠C,然后证明≌即可得到OE=OF;(2)根据等腰直角三角形的性质证明OA=OB,∠A=∠OBF,利用矩形的判定证明PEBF是矩形,从而得到BF=AE,于是可证明≌,即可得到,;(3)同(2)类似,证明,,然后根据勾股定理即可求出EF的长.【详解】解:(1)=,理由如下:∵为等腰直角三角形,,点为斜边的中点,∴OA=OC,∠A=∠C,∵,,∴,∴≌,∴.故答案是:.(2),,理由如下:如图2,连接OB,∵为等腰直角三角形,点为斜边的中点,∴OA=OB,∠A=∠OBF=,∠AOB=,∵,∴∠A=∠APE=,∴AE=PE,∵,,,∴PEBF是矩形,∴BF=PE,∴BF=AE,在和中,,∴≌,∴,,∴,∴.故答案是:,.(3)如图3,连接EF、OB,∵为等腰直角三角形,点为斜边的中点,∴OA=OB,∠BAO=∠OBC=,∠AOB=,∴∠EAO=∠OBF=,∵,∴∠APE=∠PAE=,∴AE=PE,∵,,,∴PEBF是矩形,∴BF=PE,∴BF=AE,在和中,,∴≌,∴,,∴,∴.∴是等腰直角三角形,∵OE=1,∴EF=.故答案是:.本题考查了矩形的判定和性质,利用等腰直角三角形的性质得到边角关系从而证明三角形全等是解题关键.一、填空题(本大题共5个小题,每小题4分,共20分)19、1.2【解析】

∵在△ABC中,AB=3,AC=4,BC=5,∴AB2+AC2=BC2,即∠BAC=90°.又PE⊥AB于E,PF⊥AC于F,∴四边形AEPF是矩形,∴EF=AP.∵M是EF的中点,∴AM=EF=AP.因为AP的最小值即为直角三角形ABC斜边上的高,即2.4,∴AM的最小值是1.2.20、【解析】

利用向量加法法则进行运算即可.【详解】解:原式===,故答案是:.本题考查了向量加法运算,熟练的掌握运算法则是解题的关键.21、4【解析】

根据二次根式与平方的非负性即可求解.【详解】依题意得m-3=0,n+1=0,解得m=3,n=-1,∴m-n=4此题主要考查二次根式与平方的非负性,解题的关键是熟知二次根式与平方的非负性.22、1【解析】由于函数y=2x+b经过点(1,3),故可将点的坐标代入函数解析式,求出b的值.解:将点(1,3)代入y=2x+b得3=2+b,解得b=1.故答案为1.23、630【解析】分析:两车相向而行5小时共行驶了900千米可得两车的速度之和为180千米/时,当相遇后车共行驶了720千米时,甲车到达B地,由此则可求得两车的速度.再根据甲车返回到A地总用时16.5小时,求出甲车返回时的速度即可求解.详解:设甲车,乙车的速度分别为x千米/时,y千米/时,甲车与乙车相向而行5小时相遇,则5(x+y)=900,解得x+y=180,相遇后当甲车到达B地时两车相距720千米,所需时间为720÷180=4小时,则甲车从A地到B需要9小时,故甲车的速度为900÷9=100千米/时,乙车的速度为180-100=80千米/时,乙车行驶900-720=180千米所需时间为180÷80=2.25小时,甲车从B地到A地的速度为900÷(16.5-5-4)=120千米/时.

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论