版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
学校________________班级____________姓名____________考场____________准考证号学校________________班级____________姓名____________考场____________准考证号…………密…………封…………线…………内…………不…………要…………答…………题…………第1页,共8页山东省临沂市经济开发区2025届数学九年级第一学期开学综合测试试题题号一二三四五总分得分A卷(100分)一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)1、(4分)为迎接端午促销活动,某服装店从6月份开始对春装进行“折上折“(两次打折数相同)优惠活动,已知一件原价500元的春装,优惠后实际仅需320元,设该店春装原本打x折,则有A. B.C. D.2、(4分)小刚家院子里的四棵小树E,F,G,H刚好在其梯形院子ABCD各边的中点上,若在四边形EFGH上种满小草,则这块草地的形状是()A.平行四边形B.矩形C.正方形D.梯形3、(4分)△ABC中,AB=13,AC=15,高AD=12,则BC的长为()A.14 B.4 C.14或4 D.以上都不对4、(4分)某学校为了了解九年级体能情况,随机选取30名学生测试一分钟仰卧起坐次数,并绘制了如图的直方图,学生仰卧起坐次数在25~30之间的频率为()A.0.1 B.0.17 C.0.33 D.0.45、(4分)若一次函数的函数图像不经过第()象限.A.一 B.二 C.三 D.四6、(4分)甲、乙、丙、丁四人进行100m短跑训练,统计近期10次测试的平均成绩都是13.2s,10次测试成绩的方差如下表则这四人中发挥最稳定的是()选手甲乙丙丁方差(s2)0.0200.0190.0210.022A.甲 B.乙 C.丙 D.丁7、(4分)为了响应“绿水青山就是金山银山”的号召,建设生态文明,某工厂自2019年1月开始限产并进行治污改造,其月利润y(万元)与月份x之间的变化如图所示,治污完成前是反比例函数图象的一部分,治污完成后是一次函数图象的部分,下列选项错误的是()A.4月份的利润为50万元B.污改造完成后每月利润比前一个月增加30万元C.治污改造完成前后共有4个月的利润低于100万元D.9月份该厂利润达到200万元8、(4分)若不等式组有解,则实数a的取值范围是()A.a<-36 B.a≤-36 C.a>-36 D.a≥-36二、填空题(本大题共5个小题,每小题4分,共20分)9、(4分)一个多边形的内角和是它的外角和的5倍,则这个多边形的边数为____________。10、(4分)在平面直角坐标系xOy中,已知点A1,1,B-1,1,如果以A,B,C,O为顶点的四边形是平行四边形,那么满足条件的所有点C11、(4分)要从甲、乙、丙三名学生中选出一名学生参加数学竟赛。对这三名学生进行了10次“数学测试”,经过数据分析,3人的平均成绩均为92分。甲的方差为0.024、乙的方差为0.08、丙的方差为0.015,则这10次测试成绩比较稳定的是_____________.12、(4分)如图,在Rt△ABC中,已知∠BAC=90°,点D、E、F分别是三边的中点,若AF=3cm,则DE=_____cm.13、(4分)如图,,两条直线与这三条平行线分别交于点、、和、、.已知,,,的长为_______.三、解答题(本大题共5个小题,共48分)14、(12分)商场某种新商品每件进价是40元,在试销期间发现,当每件商品售价50元时,每天可销售500件,当每件商品售价高于50元时,每涨价1元,日销售量就减少10件.据此规律,请回答:(1)当每件商品售价定为55元时,每天可销售多少件商品?商场获得的日盈利是多少?(2)在上述条件不变,商品销售正常的情况下,每件商品的销售定价为多少元时,商场日盈利可达到8000元?15、(8分)某中学举办“网络安全知识答题竞赛”,七、八年级根据初赛成绩各选出5名选手组成代表队参加决赛,两个队各选出的5名选手的决赛成绩如图所示.平均分(分)中位数(分)众数(分)方差(分2)七年级a85bS七年级2八年级85c100160(1)根据图示填空:a=,b=,c=;(2)结合两队成绩的平均数和中位数进行分析,哪个代表队的决赛成绩较好?(3)计算七年级代表队决赛成绩的方差S七年级2,并判断哪一个代表队选手成绩较为稳定.16、(8分)某学校在商场购买甲、乙两种不同足球,购买甲种足球共花费2000元,购买乙种足球共花费1400元,购买甲种足球数量是购买乙种足球数量的2倍.且购买一个乙种足球比购买一个甲种足球多花20元.(1)求购买一个甲种足球、一个乙种足球各需多少元?(2)为响应“足球进校园”的号召,这所学校决定再次购买甲、乙两种足球共50个.并且购进乙种足球的数量不少于甲种足球数量的,学校应如何采购才能使总花费最低?17、(10分)解方程:(1);(2);(3);(4).18、(10分)如图分别是的网格,网格中每个小正方形的边长均为1,线段AB的端点在小正方形的顶点上,请在以下图中各画一个图形,所画图形各顶点必须在小正方形的顶点上,并且分别满足以下要求:(1)在下图中画一个以线段AB为一边的直角,且的面积为2;(2)在下图中画一个以线段AB为一边的四边形ABDE,使四边形ABDE是中心对称图形且四边形ABDE的面积为1.连接AD,请直接写出线段AD的长.线段AD的长是________B卷(50分)一、填空题(本大题共5个小题,每小题4分,共20分)19、(4分)如图矩形ABCD中,AD=2,F是DA延长线上一点,G是CF上一点,∠ACG=∠AGC,∠GAF=∠F=20°,则AB=__.20、(4分)若有意义,则x的取值范围是.21、(4分)实数a,b在数轴上对应点的位置如图所示,化简|b|+=______.22、(4分)某老师为了了解学生周末利用网络进行学习的时间,在所任教班级随机调查了10名学生,其统计数据如下表:时间(单位:小时)
4
3
2
1
0
人数
2
4
2
1
1
则这10名学生周末利用网络进行学均时间是小时.23、(4分)如图,在平面直角坐标系xOy中,A是双曲线y=1x在第一象限的分支上的一个动点,连接AO并延长与这个双曲线的另一分支交于点B,以AB为底边作等腰直角三角形ABC,使得点(1)点C与原点O的最短距离是________;(2)没点C的坐标为((x,y)(x>0),点A在运动的过程中,y随x的变化而变化,y关于x的函数关系式为________。二、解答题(本大题共3个小题,共30分)24、(8分)已知,如图,在△ABC中,D是BC边上的一点,E是AD的中点,过点A作BC的平行线交与BE的延长线于点F,且AF=DC,连结CF.(1)求证:四边形ADCF是平行四边形;(2)当AB与AC有何数量关系时,四边形ADCF为矩形,请说明理由.25、(10分)如图l,已知正方形ABCD的对角线AC、BD相交于点O,E是AC上一点,连结EB,过点A作AMBE,垂足为M,AM交BD于点F.(1)求证:OE=OF;(2)如图2,若点E在AC的延长线上,AMBE于点M,交DB的延长线于点F,其它条件不变,则结论“OE=OF”还成立吗.如果成立,请给出证明;如果不成立,请说明理由.26、(12分)先化简,再求值:÷(x﹣),其中x=﹣1.
参考答案与详细解析一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)1、C【解析】
设该店春装原本打x折,根据原价及经过两次打折后的价格,可得出关于x的一元二次方程,此题得解.【详解】解:设该店春装原本打x折,依题意,得:500()2=1.故选:C.本题考查了由实际问题抽象出一元二次方程,找准等量关系,正确列出一元二次方程是解题的关键.2、A【解析】试题分析:连接AC,BD.利用三角形的中位线定理可得EH∥FG,EH=FG.∴这块草地的形状是平行四边形.故选A.考点:1.平行四边形的判定;2.三角形中位线定理.3、C【解析】
分两种情况:△ABC是锐角三角形和△ABC是钝角三角形,都需要先求出BD,CD的长度,在锐角三角形中,利用求解;在钝角三角形中,利用求解.【详解】(1)若△ABC是锐角三角形,在中,∵由勾股定理得在中,∵由勾股定理得∴(2)若△ABC是钝角三角形,在中,∵由勾股定理得在中,∵由勾股定理得∴综上所述,BC的长为14或4故选:C.本题主要考查勾股定理,掌握勾股定理并分情况讨论是解题的关键.4、D【解析】
首先根据频数分布直方图可以知道仰卧起坐次数在25~30之间的频数,然后除以总人数30,即可得到仰卧起坐次数在25~30之间的频率.【详解】解:∵从频数分布直方图可以知道仰卧起坐次数在25~30之间的频数为12,∴学生仰卧起坐次数在25~30之间的频率为12÷30=0.1.故选:D.本题考查读频数分布直方图的能力和利用统计图获取信息的能力;利用统计图获取信息时,必须认真观察、分析、研究统计图,才能作出正确的判断和解决问题.5、D【解析】
根据k=5>0,函数图像经过一、三象限,b=1>0,函数图像与y轴的正半轴相交,即可进行判断.【详解】根据k=5>0,函数图像经过第一、三象限,b=1>0,函数图像与y轴的正半轴相交,则一次函数的函数图像过第一、二、三象限,不过第四象限,故选D.本题主要考查了一次函数图像的性质,熟练掌握一次函数图像与系数的关系是解决本题的关键.6、B【解析】
方差是反映一组数据的波动大小的一个量.方差越大,则平均值的离散程度越大,稳定性也越小;反之,则它与其平均值的离散程度越小,稳定性越好.【详解】解:∵s2丁>s2丙>s2甲>s2乙,方差越大,则平均值的离散程度越大,稳定性也越小;反之,则它与其平均值的离散程度越小,稳定性越好.∴乙最稳定.故选:B.本题考查了方差,正确理解方差的意义是解题的关键.7、C【解析】
首先设反比例函数和一次函数的解析式,根据图像信息,即可得出解析式,然后即可判断正误.【详解】设反比例函数解析式为y=根据题意,图像过点(1,200),则可得出y=当x=4时,y=50,即4月份的利润为50万元,A选项正确;设一次函数解析式为y=kx+b根据题意,图像过点(4,50)和(6,110)则有4k+b=50解得k=30∴一次函数解析式为y=30x-70,其斜率为30,即污改造完成后每月利润比前一个月增加30万元,B选项正确;治污改造完成前后,1-6月份的利润分别为200万元、100万元、2003万元、50万元、110万元,共有3个月的利润低于100万元,C9月份的利润为30×9-70=200万元,D选项正确;故答案为C.此题主要考查一次函数和反比例函数的实际应用,熟练掌握,即可解题.8、C【解析】,解不等式①得,x<a-1,解不等式②得,x≥-37,因为不等式组有解,所以-37<a-1,解得:a>-36,故选C.二、填空题(本大题共5个小题,每小题4分,共20分)9、1【解析】
根据多边形的内角和公式(n-2)•180°与外角和定理列出方程,然后求解即可.【详解】设这个多边形是n边形,根据题意得,(n-2)•180°=5×360°,解得n=1.故答案为:1.本题考查了多边形的内角和公式与外角和定理,多边形的外角和与边数无关,任何多边形的外角和都是360°.10、-2,0【解析】
需要分类讨论:以AB为该平行四边形的边和对角线两种情况.【详解】解:如图,①当AB为该平行四边形的边时,AB=OC,∵点A(1,1),B(-1,1),O(0,0)∴点C坐标(-2,0)或(2,0)②当AB为该平行四边形的对角线时,C(0,2).故答案是:(-2,0)或(2,0)或(0,2).本题考查了平行四边形的性质和坐标与图形性质.解答本题关键要注意分两种情况进行求解.11、丙【解析】
根据方差是用来衡量一组数据波动大小的量,方差越大,表明这组数据偏离平均数越大,即波动越大,数据越不稳定解答即可.【详解】解:因为3人的平均成绩均为92分,甲的方差为0.024、乙的方差为0.08、丙的方差为0.015,
丙的方差最小,所以这10次测试成绩比较稳定的是丙,故答案为:丙本题考查方差的意义.方差是用来衡量一组数据波动大小的量,方差越大,表明这组数据偏离平均数越大,即波动越大,数据越不稳定;反之,方差越小,表明这组数据分布比较集中,各数据偏离平均数越小,即波动越小,数据越稳定.12、3【解析】
∵在直角三角形中,斜边上的中线等于斜边的一半,∴BC=2AF=6cm,又∵DE是△ABC的中位线,∴DE=BC=3cm.故答案为3.本题考查直角三角形斜边上的中线和三角形的中位线.在直角三角形中,斜边上的中线等于斜边的一半;三角形的中位线平行于第三边,且等于第三边的一半.13、【解析】
根据平行线分线段成比例定理得到比例式,代入计算即可.【详解】解:∵l1∥l2∥l3,∴,即,解得,EF=,故答案为:.本题考查的是平行线分线段成比例定理,灵活运用定理、找准对应关系是解题的关键.三、解答题(本大题共5个小题,共48分)14、(1)每天可销售450件商品,商场获得的日盈利是6750元;(2)每件商品售价为60或1元时,商场日盈利达到100元.【解析】
(1)首先求出每天可销售商品数量,然后可求出日盈利;(2)设商场日盈利达到100元时,每件商品售价为x元,根据每件商品的盈利×销售的件数=商场的日盈利,列方程求解即可.【详解】(1)当每件商品售价为55元时,比每件商品售价50元高出5元,即55﹣50=5(元),则每天可销售商品450件,即500﹣5×10=450(件),商场可获日盈利为(55﹣40)×450=6750(元).答:每天可销售450件商品,商场获得的日盈利是6750元;(2)设商场日盈利达到100元时,每件商品售价为x元.则每件商品比50元高出(x﹣50)元,每件可盈利(x﹣40)元,每日销售商品为500﹣10×(x﹣50)=1000﹣10x(件).依题意得方程(1000﹣10x)(x﹣40)=100,整理,得x2﹣140x+410=0,解得x=60或1.答:每件商品售价为60或1元时,商场日盈利达到100元.15、(1)85,85,80;(2)七年级决赛成绩较好;(3)七年级代表队选手成绩比较稳定.【解析】
(1)根据平均数、中位数、众数的概念分析计算即可;(2)根据图表可知七八年级的平均分相同,因此结合两个年级的中位数来判断即可;(3)根据方差的计算公式来计算即可,然后根据“方差越小就越稳定”的特点来判断哪个队成绩稳定即可.【详解】解:(1)七年级的平均分a=,众数b=85,八年级选手的成绩是:70,75,80,100,100,故中位数c=80;故答案为85,85,80;(2)由表格可知七年级与八年级的平均分相同,七年级的中位数高,故七年级决赛成绩较好;(3)S2七年级=(分2),S2七年级<S2八年级∴七年级代表队选手成绩比较稳定.本题主要考查了平均数、中位数、众数、方差的概念及统计意义,熟练掌握其概念是解题的关键.16、(1)购买一个甲种足球需50元,购买一个乙种足球需70元;(2)这所学校再次购买1个甲种足球,3个乙种足球,才能使总花费最低.【解析】
(1)设购买一个甲种足球需x元,则购买一个乙种足球需(x+20),根据购买甲种足球数量是购买乙种足球数量的2倍列出方程解答即可;
(2)设这所学校再次购买a个甲种足球,根据题意列出不等式解答即可.【详解】(1)设购买一个甲种足球需x元,则购买一个乙种足球需(x+20)元,根据题意,可得:=2×,解得:x=50,经检验x=50是原方程的解,答:购买一个甲种足球需50元,购买一个乙种足球需70元;(2)设这所学校再次购买a个甲种足球,(50-a)个乙种足球,根据题意,可得:50-a≥a,解得:a≤,∵a为整数,∴a≤1.设总花费为y元,由题意可得,y=50a+70(50-a)=-20a+2.∵-20<0,∴y随x的增大而减小,∴a取最大值1时,y的值最小,此时50-a=3.答:这所学校再次购买1个甲种足球,3个乙种足球,才能使总花费最低.本题考查的知识点是分式方程的应用和一元一次不等式的应用,解题关键是根据题意列出方程.17、(1)x1=﹣3,x2=3;(2)x1=0,x2=﹣2;(3),;(4)x=﹣1【解析】
(1)利用因式分解法解方程;(2)利用因式分解法解方程;(3)利用配方法解方程;(4)去分母得到2(2x+1)=3(x﹣1),然后解整式方程后进行检验确定原方程的解.【详解】解:(1)(x+3)(x﹣3)=0,x+3=0或x﹣3=0,所以x1=﹣3,x2=3;(2)x(x+2)=0,x=0或x+2=0,所以x1=0,x2=﹣2;(3)x2﹣6x+9=8,(x﹣3)2=8,x﹣3=±2,所以,;(4)两边同时乘以(x﹣1)(2x+1),得2(2x+1)=3(x﹣1),解得x=﹣1,经检验,原方程的解为x=﹣1.本题考查了解一元二次方程﹣因式分解法:因式分解法就是利用因式分解求出方程的解的方法,这种方法简便易用,是解一元二次方程最常用的方法.也考查了解分式方程.18、(1)见解析;(2)见解析,AD=.【解析】
(1)根据正方形的性质和AB的长度作图即可;(2)利用数形结合的思想即可解决问题,由勾股定理可求出AD的长度.【详解】(1)如图,(2)如图,,AD==.本题考查作图-应用与设计、勾股定理、平行四边形的判定和性质等知识,解题的关键是学会利用数形结合的思想解决问题.一、填空题(本大题共5个小题,每小题4分,共20分)19、6【解析】试题分析:根据三角形的一个外角等于与它不相邻的两个内角的和可得∠AGC=∠GAF+∠F=40°,再根据等腰三角形的性质求出∠CAG,然后求出∠CAF=120°,再根据∠BAC=∠CAF-∠BAF求出∠BAC=30°,再根据直角三角形30°角所对的直角边等于斜边的一半可得AC=2BC=2AD,然后利用勾股定理列式计算即可得解.试题解析:由三角形的外角性质得,∠AGC=∠GAF+∠F=20°+20°=40°,∵∠ACG=∠AGC,∴∠CAG=180°-∠ACG-∠AGC=180°-2×40°=100°,∴∠CAF=∠CAG+∠GAF=100°+20°=120°,∴∠BAC=∠CAF-∠BAF=30°,在Rt△ABC中,AC=2BC=2AD=22,由勾股定理,AB=AB【考点】1.矩形的性质;2.等腰三角形的判定与性质;3.含30度角的直角三角形;4.直角三角形斜边上的中线;5.勾股定理.20、x≥8【解析】略21、﹣a【解析】
根据各点在数轴上的位置判断出a、b的符号及绝对值的大小,再根据有理数的加法法则和二次根式的性质,把原式进行化简即可.【详解】解:由数轴可知a<0<b,且|a|>|b|,则a+b<0,∴原式=b+|a+b|=b﹣(a+b)=b﹣a﹣b=﹣a,故答案为﹣a.本题考查的是实数与数轴,二次根式的性质,以及有理数的加法法则,熟知实数与数轴上各点是一一对应关系及绝对值性质是解答此题的关键.22、2.5小时【解析】
平均数的计算方法是求出所有数据的和,然后除以数据的总个数.本题利用加权平均数的公式即可求解.【详解】解:由题意,可得这10名学生周末利用网络进行学均时间是:(4×2+3×4+2×2+1×1+0×1)=2.5(小时).故答案为2.523、2y=-1【解析】
(1)先根据反比例函数的对称性及等腰直角三角形的性质可得OC=OA=OB,利用勾股定理求出AO的长为m2+1m2(2)先证明△AOD≌△COE可得AD=CE,OD=OE,然后根据点C的坐标表示出A的坐标,再由反比例函数的图象与性质即可求出y与x的函数解析式.【详解】解:(1)连接OC,过点A作AD⊥y轴,如图,,
∵A是双曲线y=1x在第一象限的分支上的一个动点,延长AO交另一分支于点B∴OA=OB,∵△ABC是等腰直角三角形,∴OC=OA=OB,∴当OA的长最短时,OC的长为点C与原点O的最短距离,设A(m,1m∴AD=m,OD=1m∴OA=AD2+OD2∵m-1∴当m-1m2=0∴点C与原点O的最短距离为2.故答案为2;(2)过点C作x轴的垂线,垂足为E,如上图,∴∠ADO=∠CEO=90°,∵△ABC是等腰直角三角形,∴OC=OA=OB,OC⊥AB,∴∠COE+∠AOE=90°,∵∠AOD+∠AOE=90°,∴∠AOD=
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 会计数据分析 课件 第2章 数据的准备和清理
- 2024届上海市南汇中学普通高考第一次适应性检测试题数学试题
- 2024届山西省忻州市静乐一中高三4月调研测试卷数学试题
- 《汽化和液化》课件教学
- 5年中考3年模拟试卷初中生物八年级下册第三节基因的显性和隐性
- 学校校车平安管理工作情况汇报范文
- 高中语文 《五代史伶官传序》随堂练习(含答案)
- 一体化加药装置
- 苏少版小学音乐四年级上册教案
- 花城版七年级音乐下册全册教案【完整版】
- 仿生青蛙机器人的设计与运动控制
- 国开2024年秋《国际经济法》形考任务1-4答案
- 2024年全国各地中考试题分类汇编:词语、成语的运用
- 2024年广东省汕头市事业单位“汕头市中高端人才专场招聘会(汕头地区)”招聘417人历年高频500题难、易错点模拟试题附带答案详解
- 2024-2025学年八年级英语上学期期中测试卷03人教新目标版
- 资产收购项目居间服务合同书
- 2024 旅游管理专业技能考核题库
- 2.6热对流(教学课件)五年级科学上册
- 2025届高考语文一轮复习:荒诞小说 专题突破 课件
- 2024至2030年中国EDI超纯水设备行业运行态势与发展行情监测报告
- 2024年车辆牌照租赁协议标准版本(四篇)
评论
0/150
提交评论