版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2022-2023学年山东省郓城一中高三下学期质量检查数学试题试卷注意事项:1.答题前,考生先将自己的姓名、准考证号填写清楚,将条形码准确粘贴在考生信息条形码粘贴区。2.选择题必须使用2B铅笔填涂;非选择题必须使用0.5毫米黑色字迹的签字笔书写,字体工整、笔迹清楚。3.请按照题号顺序在各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试题卷上答题无效。4.保持卡面清洁,不要折叠,不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.《易经》包含着很多哲理,在信息学、天文学中都有广泛的应用,《易经》的博大精深,对今天的几何学和其它学科仍有深刻的影响.下图就是易经中记载的几何图形——八卦田,图中正八边形代表八卦,中间的圆代表阴阳太极图,八块面积相等的曲边梯形代表八卦田.已知正八边形的边长为,阴阳太极图的半径为,则每块八卦田的面积约为()A. B.C. D.2.下列几何体的三视图中,恰好有两个视图相同的几何体是()A.正方体 B.球体C.圆锥 D.长宽高互不相等的长方体3.函数在上为增函数,则的值可以是()A.0 B. C. D.4.已知函数,则()A. B.1 C.-1 D.05.下列函数中,既是奇函数,又在上是增函数的是().A. B.C. D.6.某四棱锥的三视图如图所示,则该四棱锥的体积为()A. B. C. D.7.定义在上的函数满足,则()A.-1 B.0 C.1 D.28.世纪产生了著名的“”猜想:任给一个正整数,如果是偶数,就将它减半;如果是奇数,则将它乘加,不断重复这样的运算,经过有限步后,一定可以得到.如图是验证“”猜想的一个程序框图,若输入正整数的值为,则输出的的值是()A. B. C. D.9.某四棱锥的三视图如图所示,该几何体的体积是()A.8 B. C.4 D.10.已知双曲线与双曲线没有公共点,则双曲线的离心率的取值范围是()A. B. C. D.11.已知,,分别是三个内角,,的对边,,则()A. B. C. D.12.的展开式中的项的系数为()A.120 B.80 C.60 D.40二、填空题:本题共4小题,每小题5分,共20分。13.直线xsinα+y+2=0的倾斜角的取值范围是________________.14.已知,记,则的展开式中各项系数和为__________.15.已知函数在上仅有2个零点,设,则在区间上的取值范围为_______.16.设数列的前项和为,且对任意正整数,都有,则___三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(12分)已知数列,其前项和为,满足,,其中,,,.⑴若,,(),求证:数列是等比数列;⑵若数列是等比数列,求,的值;⑶若,且,求证:数列是等差数列.18.(12分)在中,内角的对边分别是,满足条件.(1)求角;(2)若边上的高为,求的长.19.(12分)已知椭圆的右焦点为,离心率为.(1)若,求椭圆的方程;(2)设直线与椭圆相交于、两点,、分别为线段、的中点,若坐标原点在以为直径的圆上,且,求的取值范围.20.(12分)已知数列的各项均为正数,为其前n项和,对于任意的满足关系式.(1)求数列的通项公式;(2)设数列的通项公式是,前n项和为,求证:对于任意的正数n,总有.21.(12分)已知函数.(1)若函数在上单调递增,求实数的值;(2)定义:若直线与曲线都相切,我们称直线为曲线、的公切线,证明:曲线与总存在公切线.22.(10分)如图,在中,已知,,,为线段的中点,是由绕直线旋转而成,记二面角的大小为.(1)当平面平面时,求的值;(2)当时,求二面角的余弦值.
参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.B【解析】
由图利用三角形的面积公式可得正八边形中每个三角形的面积,再计算出圆面积的,两面积作差即可求解.【详解】由图,正八边形分割成个等腰三角形,顶角为,设三角形的腰为,由正弦定理可得,解得,所以三角形的面积为:,所以每块八卦田的面积约为:.故选:B【点睛】本题考查了正弦定理解三角形、三角形的面积公式,需熟记定理与面积公式,属于基础题.2.C【解析】
根据基本几何体的三视图确定.【详解】正方体的三个三视图都是相等的正方形,球的三个三视图都是相等的圆,圆锥的三个三视图有一个是圆,另外两个是全等的等腰三角形,长宽高互不相等的长方体的三视图是三个两两不全等的矩形.故选:C.【点睛】本题考查基本几何体的三视图,掌握基本几何体的三视图是解题关键.3.D【解析】
依次将选项中的代入,结合正弦、余弦函数的图象即可得到答案.【详解】当时,在上不单调,故A不正确;当时,在上单调递减,故B不正确;当时,在上不单调,故C不正确;当时,在上单调递增,故D正确.故选:D【点睛】本题考查正弦、余弦函数的单调性,涉及到诱导公式的应用,是一道容易题.4.A【解析】
由函数,求得,进而求得的值,得到答案.【详解】由题意函数,则,所以,故选A.【点睛】本题主要考查了分段函数的求值问题,其中解答中根据分段函数的解析式,代入求解是解答的关键,着重考查了推理与运算能力,属于基础题.5.B【解析】
奇函数满足定义域关于原点对称且,在上即可.【详解】A:因为定义域为,所以不可能时奇函数,错误;B:定义域关于原点对称,且满足奇函数,又,所以在上,正确;C:定义域关于原点对称,且满足奇函数,,在上,因为,所以在上不是增函数,错误;D:定义域关于原点对称,且,满足奇函数,在上很明显存在变号零点,所以在上不是增函数,错误;故选:B【点睛】此题考查判断函数奇偶性和单调性,注意奇偶性的前提定义域关于原点对称,属于简单题目.6.B【解析】
由三视图知该四棱锥是底面为正方形,且一侧棱垂直于底面,由此求出四棱锥的体积.【详解】由三视图知该四棱锥是底面为正方形,且一侧棱垂直于底面,画出四棱锥的直观图,如图所示:则该四棱锥的体积为.故选:B.【点睛】本题考查了利用三视图求几何体体积的问题,是基础题.7.C【解析】
推导出,由此能求出的值.【详解】∵定义在上的函数满足,∴,故选C.【点睛】本题主要考查函数值的求法,解题时要认真审题,注意函数性质的合理运用,属于中档题.8.C【解析】
列出循环的每一步,可得出输出的的值.【详解】,输入,,不成立,是偶数成立,则;,不成立,是偶数成立,则;,不成立,是偶数成立,则;,不成立,是偶数不成立,则;,不成立,是偶数成立,则;,不成立,是偶数成立,则;,不成立,是偶数成立,则;,不成立,是偶数成立,则;,成立,跳出循环,输出的值为.故选:C.【点睛】本题考查利用程序框图计算输出结果,考查计算能力,属于基础题.9.D【解析】
根据三视图知,该几何体是一条垂直于底面的侧棱为2的四棱锥,画出图形,结合图形求出底面积代入体积公式求它的体积.【详解】根据三视图知,该几何体是侧棱底面的四棱锥,如图所示:结合图中数据知,该四棱锥底面为对角线为2的正方形,高为PA=2,∴四棱锥的体积为.故选:D.【点睛】本题考查由三视图求几何体体积,由三视图正确复原几何体是解题的关键,考查空间想象能力.属于中等题.10.C【解析】
先求得的渐近线方程,根据没有公共点,判断出渐近线斜率的取值范围,由此求得离心率的取值范围.【详解】双曲线的渐近线方程为,由于双曲线与双曲线没有公共点,所以双曲线的渐近线的斜率,所以双曲线的离心率.故选:C【点睛】本小题主要考查双曲线的渐近线,考查双曲线离心率的取值范围的求法,属于基础题.11.C【解析】
原式由正弦定理化简得,由于,可求的值.【详解】解:由及正弦定理得.因为,所以代入上式化简得.由于,所以.又,故.故选:C.【点睛】本题主要考查正弦定理解三角形,三角函数恒等变换等基础知识;考查运算求解能力,推理论证能力,属于中档题.12.A【解析】
化简得到,再利用二项式定理展开得到答案.【详解】展开式中的项为.故选:【点睛】本题考查了二项式定理,意在考查学生的计算能力.二、填空题:本题共4小题,每小题5分,共20分。13.【解析】因为sinα∈[-1,1],所以-sinα∈[-1,1],所以已知直线的斜率范围为[-1,1],由倾斜角与斜率关系得倾斜角范围是.答案:14.【解析】
根据定积分的计算,得到,令,求得,即可得到答案.【详解】根据定积分的计算,可得,令,则,即的展开式中各项系数和为.【点睛】本题主要考查了定积分的应用,以及二项式定理的应用,其中解答中根据定积分的计算和二项式定理求得的表示是解答本题的关键,着重考查了运算与求解能力,属于基础题.15.【解析】
先根据零点个数求解出的值,然后得到的解析式,采用换元法求解在上的值域即可.【详解】因为在上有两个零点,所以,所以,所以且,所以,所以,所以,令,所以,所以,因为,所以,所以,所以,所以,,所以.故答案为:.【点睛】本题考查三角函数图象与性质的综合,其中涉及到换元法求解三角函数值域的问题,难度较难.对形如的函数的值域求解,关键是采用换元法令,然后根据,将问题转化为关于的函数的值域,同时要注意新元的范围.16.【解析】
利用行列式定义,得到与的关系,赋值,即可求出结果。【详解】由,令,得,解得。【点睛】本题主要考查行列式定义的应用。三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(1)见解析(2)(3)见解析【解析】试题分析:(1)(),所以,故数列是等比数列;(2)利用特殊值法,得,故;(3)得,所以,得,可证数列是等差数列.试题解析:(1)证明:若,则当(),所以,即,所以,又由,,得,,即,所以,故数列是等比数列.(2)若是等比数列,设其公比为(),当时,,即,得,①当时,,即,得,②当时,,即,得,③②①,得,③②,得,解得.代入①式,得.此时(),所以,是公比为1的等比数列,故.(3)证明:若,由,得,又,解得.由,,,,代入得,所以,,成等差数列,由,得,两式相减得:即所以相减得:所以所以,因为,所以,即数列是等差数列.18.(1).(2)【解析】
(1)利用正弦定理的边角互化可得,再根据,利用两角和的正弦公式即可求解.(2)已知,由知,在中,解出即可.【详解】(1)由正弦定理知由己知,而∴,(2)已知,则由知先求∴∴∴【点睛】本题主要考查了正弦定理解三角形、三角形的性质、两角和的正弦公式,需熟记定理与公式,属于基础题.19.(1);(2).【解析】
(1)由椭圆的离心率求出、的值,由此可求得椭圆的方程;(2)设点、,联立直线与椭圆的方程,列出韦达定理,由题意得出,可得出,【详解】(1)由题意得,,.又因为,,所以椭圆的方程为;(2)由,得.设、,所以,,依题意,,易知,四边形为平行四边形,所以.因为,,所以.即,将其整理为.因为,所以,.所以,即.【点睛】本题考查椭圆方程的求法和直线与椭圆位置关系的综合运用,解题时要认真审题,注意挖掘题设中的隐含条件,合理地进行等价转化,考查计算能力,属于中等题.20.(1)(2)证明见解析【解析】
(1)根据公式得到,计算得到答案.(2),根据裂项求和法计算得到,得到证明.【详解】(1)由已知得时,,故.故数列为等比数列,且公比.又当时,,..(2)..【点睛】本题考查了数列通项公式和证明数列不等式,意在考查学生对于数列公式方法的综合应用.21.(1);(2)见解析.【解析】
(1)求出导数,问题转化为在上恒成立,利用导数求出的最小值即可求解;(2)分别设切点横坐标为,利用导数的几何意义写出切线方程,问题转化为证明两直线重合,只需满足有解即可,利用函数的导数及零点存在性定理即可证明存在.【详解】(1),函数在上单调递增等价于在上恒成立.令,得,所以在单调递减,在单调递增,则.因为,则在上恒成立等价于在上恒成立;又,所以,即.(2)设的切点横坐标为,则切线方程为……①设的切点横坐标为,则,切线方程为……②若存在,使①②成为同一条直线,则曲线与存在公切线,由①②得消去得即令,则所以,函数在区间上单调递增,,使得时总有又时,在上总有解综上,函数与总存在公切线.【点睛】本题主要考查了利
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- GB/T 44663-2024绝缘液体电气用未使用过的改性或混合酯
- 名著《海的女儿》读后感(24篇)
- 初中高知识练习测试卷
- 2024安全管理技术竞赛(单选)练习试卷附答案(一)
- 专题六搜索引擎营销(课件)职教高考电子商务专业《网络营销实务》
- 公共英语第一学期 《英语e通语法》复习要点
- 第1章 培训概述 课件
- 新生儿游泳及抚触课件
- 2024届上海市宝山区罗店中学高考数学试题二轮优化提升专题训练
- 关于十九教学课件
- 三年级上册语文16.金色的草地 课件(共12张ppt)
- 变压器装配工艺及技术质量标准3-14
- ASME计算表 V1.0-封头厚度计算
- 沟槽支护安全施工专项方案
- 圣泉中学政治综合实践活动表格
- 成立外贸部策划书
- 猜想与假设在高中化学教学中的应用
- 油水井调剖堵水剂
- 网络直播平台的营销策略研究——以起点直播公司为例
- 年处理10000辆报废新能源汽车拆解再生利用项目可行性研究报告-模板
- 供应商送货要求规范
评论
0/150
提交评论