版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
安徽宿州五校2025届高一数学第一学期期末学业水平测试试题注意事项:1.答题前,考生先将自己的姓名、准考证号码填写清楚,将条形码准确粘贴在条形码区域内。2.答题时请按要求用笔。3.请按照题号顺序在答题卡各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试卷上答题无效。4.作图可先使用铅笔画出,确定后必须用黑色字迹的签字笔描黑。5.保持卡面清洁,不要折暴、不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1.下列函数中,既是偶函数,又在区间上单调递减的是()A. B.C. D.2.设a>0,b>0,化简的结果是()A. B.C. D.-3a3.已知且,则“”是“”的()A.充分不必要条件 B.必要不充分条件C.充要条件 D.既不充分也不必要条件4.已知角的顶点与原点重合,始边与轴的非负半轴重合,若它的终边经过点,则()A. B.C. D.5.已知角α的终边过点,则的值是()A. B.C.0 D.或6.点直线中,被圆截得的最长弦所在的直线方程为()A. B.C. D.7.已知,那么下列结论正确的是()A. B.C. D.8.已知函数,则函数的零点个数是A.1 B.2C.3 D.49.已知集合,则集合中元素的个数为()A.1 B.2C.3 D.410.已知命题p:∃n∈N,2n>2021.那么A.∀n∈N,2n≤2021 B.∀n∈NC.∃n∈N,2n≤2021 D.∃n∈N二、填空题:本大题共6小题,每小题5分,共30分。11.如图,在长方体ABCD—中,AB=3cm,AD=2cm,,则三棱锥的体积___________.12.已知函数若函数有三个不同的零点,且,则的取值范围是____13.已知正实数x,y满足,则的最小值为______14.已知函数的定义域为R,,且函数为偶函数,则的值为________,函数是________函数(从“奇”、“偶”、“非奇非偶”、“既奇又偶”中选填一个).15.在中,若,则的形状一定是___________三角形.16.已知在上单调递增,则的范围是_____三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17.如图为函数的一个周期内的图象.(1)求函数的解析式及单调递减区间;(2)当时,求的值域.18.计算:(1).(2)19.若实数,,满足,则称比远离.(1)若比远离,求实数的取值范围;(2)若,,试问:与哪一个更远离,并说明理由.20.已知集合,(Ⅰ)当时,求;;(Ⅱ)若,求实数的值21.已知函数的部分图象如图所示.(1)求函数的解析式,并求它的对称中心的坐标;(2)将函数的图象向右平移个单位,得到的函数为偶函数,求函数,的最值及相应的值.
参考答案一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1、D【解析】依次判断4个选项的单调性及奇偶性即可.【详解】对于A,在区间上单调递增,错误;对于B,,由得,单调递增,错误;对于C,当时,没有意义,错误;对于D,为偶函数,且在时,单调递减,正确.故选:D.2、D【解析】由分数指数幂的运算性质可得结果.【详解】因为,,所以.故选:D.3、D【解析】根据充分、必要条件的知识确定正确选项.【详解】“”时,若,则,不能得到“”.“”时,若,则,不能得到“”.所以“”是“”的既不充分也不必要条件.故选:D4、D【解析】利用定义法求出,再用二倍角公式即可求解.【详解】依题意,角的终边经过点,则,于是.故选:D5、B【解析】根据三角函数的定义进行求解即可.【详解】因为角α的终边过点,所以,,,故选:B6、A【解析】要使得直线被圆截得的弦长最长,则直线必过圆心,利用斜率公式求得斜率,结合点斜式方程,即可求解.【详解】由题意,圆,可得圆心坐标为,要使得直线被圆截得的弦长最长,则直线必过圆心,可得直线的斜率为,所以直线的方程为,即所求直线的方程为.故选:A.7、B【解析】根据不等式的性质可直接判断出结果.【详解】,,知A错误,B正确;当时,,C错误;当时,,D错误.故选:B.8、A【解析】设,则函数等价为,由,转化为,利用数形结合或者分段函数进行求解,即可得到答案【详解】由题意,如图所示,设,则函数等价为,由,得,若,则,即,不满足条件若,则,则,满足条件,当时,令,解得(舍去);当时,令,解得,即是函数的零点,所以函数的零点个数只有1个,故选A【点睛】本题主要考查了函数零点问题的应用,其中解答中利用换元法结合分段函数的表达式以及数形结合是解决本题的关键,着重考查了数形结合思想,以及推理与运算能力,属于基础题.9、D【解析】由题意,集合是由点作为元素构成的一个点集,根据,即可得到集合的元素.【详解】由题意,集合B中元素有(1,1),(1,2),(2,1),(2,2),共4个.故选D【点睛】与集合元素有关问题的思路:(1)确定集合的元素是什么,即确定这个集合是数集还是点集(2)看这些元素满足什么限制条件(3)根据限制条件列式求参数的值或确定集合元素的个数,但要注意检验集合是否满足元素的互异性10、A【解析】根据含有一个量词命题否定的定义,即可得答案.【详解】命题p:∃n∈N,2n>2021的否定¬p为:∀n∈N,故选:A二、填空题:本大题共6小题,每小题5分,共30分。11、1【解析】根据题意,求得棱锥的底面积和高,由体积公式即可求得结果.【详解】根据题意可得,平面,故可得,又因为,故可得.故答案为:.【点睛】本题考查三棱锥体积的求解,涉及转换棱锥的顶点,属基础题.12、;【解析】作图可知:点睛:利用函数零点情况求参数值或取值范围的方法(1)利用零点存在的判定定理构建不等式求解.(2)分离参数后转化为函数的值域(最值)问题求解.(3)转化为两熟悉的函数图象的上、下关系问题,从而构建不等式求解.13、【解析】令,转化条件为方程有解,运算可得【详解】令,则,化简得,所以,解得或(舍去),当时,,符合题意,所以得最小值为.故答案为:.14、①.7②.奇【解析】利用函数的奇偶性以及奇偶性定义即可求解.【详解】函数为偶函数,由,则,所以,所以,,定义域为,定义域关于原点对称.因为,所以,所以函数为奇函数.故答案为:7;奇15、等腰【解析】根据可得,利用两角和的正弦公式展开,再逆用两角差的正弦公式化简,结合三角形内角的范围可得,即可得的形状.【详解】因,,所以,即,所以,可得:,因为,,所以所以,即,故是等腰三角形.故答案为:等腰.16、【解析】令,利用复合函数的单调性分论讨论函数的单调性,列出关于的不等式组,求解即可.【详解】令当时,由题意知在上单调递增且对任意的恒成立,则,无解;当时,由题意知在上单调递减且对任意的恒成立,则,解得.故答案为:【点睛】本题考查对数型复合函数的单调性,同增异减,求解时注意对数函数的定义域,属于基础题.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17、(1),;(2).【解析】(1)由图可求出,令,即可求出单调递减区间;(2)由题可得,则可求得值域.【详解】(1)由题图,知,所以,所以.将点(-1,0)代入,得.因为,所以,所以.令,得.所以的单调递减区间为.(2)当时,,此时,则,即的值域为.【点睛】方法点睛:根据三角函数部分图象求解析式方法:(1)根据图象的最值可求出A;(2)求出函数的周期,利用求出;(3)取点代入函数可求得.18、(1)20(2)-2【解析】根据指数运算公式以及对数运算公式即可求解。【详解】(1)=(2)=【点睛】本题考查指数与对数的运算,以及计算能力,(1)根据指数幂的运算法则求解即可。(2)根据对数运算的性质求解即可,属于基础题。19、(1);(2)比更远离,理由见解析.【解析】(1)由绝对值的几何意义可得,即可求的取值范围;(2)只需比较大小,讨论、分别判断代数式的大小关系,即知与哪一个更远离.【小问1详解】由比远离,则,即.∴或,得:或.∴的取值范围是.【小问2详解】因为,有,因为,所以从而,①当时,,即;②当时,,又,则∴,即综上,,即比更远离20、(Ⅰ),(Ⅱ)m的值为8【解析】由,(Ⅰ)当m=3时,,则(Ⅱ),此时,符合题意,故实数m的值为821、(1),对称中心坐标为;(2),此时;,此时.【解析】⑴由图象求得振幅,周期,利用周期公式可求,将点代入解得,求得函数解析式,又,解得的值,可得函数的对称中心的坐标;⑵由题意求出及函数的解析式,又因为,同时结合三角函
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 消费品以旧换新专项实施方案
- 员工年终工作述职报告(13篇)
- 汽车装调工、维修工理论2023版练习试题附答案
- 履职能力生产复习试题含答案
- 专题四 网络市场调研(课件)职教高考电子商务专业《网络营销实务》
- 古代汉语语法(Ancient Chinese grammar)
- 高中英语语法易错难题
- 第2章 统计调查与整 理课件
- 新生儿窒息和缺氧缺血性脑病课件
- 2024-2025学年第07章 章末测试-八年级物理人教版(下册)含答案
- 幼儿园我喜欢自己-优质(绘本)课件
- 动火监护人培训资料
- (全)有限空间作业安全风险告知书
- 校园跳绳比赛活动方案(16篇)
- 变压器生产工艺设计
- 2023年北京大学医学部招考聘用模拟预测(共1000题)笔试备考题库及答案解析
- 电子病历等级评审四级解读培训课件
- 鲁教版五四制九年级数学上第三章第四节二次函数的图象与性质第三课时课件
- 附件5教师思想动态与心理健康状况摸排表
- T-SHSPTA 002-2023 药品上市许可持有人委托销售管理规范
- 云朵面包【经典绘本】
评论
0/150
提交评论