云南省丽江市古城二中2025届数学高三第一学期期末考试试题含解析_第1页
云南省丽江市古城二中2025届数学高三第一学期期末考试试题含解析_第2页
云南省丽江市古城二中2025届数学高三第一学期期末考试试题含解析_第3页
云南省丽江市古城二中2025届数学高三第一学期期末考试试题含解析_第4页
云南省丽江市古城二中2025届数学高三第一学期期末考试试题含解析_第5页
已阅读5页,还剩14页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

云南省丽江市古城二中2025届数学高三第一学期期末考试试题注意事项:1.答题前,考生先将自己的姓名、准考证号码填写清楚,将条形码准确粘贴在条形码区域内。2.答题时请按要求用笔。3.请按照题号顺序在答题卡各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试卷上答题无效。4.作图可先使用铅笔画出,确定后必须用黑色字迹的签字笔描黑。5.保持卡面清洁,不要折暴、不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.已知等边△ABC内接于圆:x2+y2=1,且P是圆τ上一点,则的最大值是()A. B.1 C. D.22.阅读如图的程序框图,若输出的值为25,那么在程序框图中的判断框内可填写的条件是()A. B. C. D.3.在中,角所对的边分别为,已知,.当变化时,若存在最大值,则正数的取值范围为A. B. C. D.4.设非零向量,,,满足,,且与的夹角为,则“”是“”的().A.充分非必要条件 B.必要非充分条件C.充分必要条件 D.既不充分也不必要条件5.胡夫金字塔是底面为正方形的锥体,四个侧面都是相同的等腰三角形.研究发现,该金字塔底面周长除以倍的塔高,恰好为祖冲之发现的密率.设胡夫金字塔的高为,假如对胡夫金字塔进行亮化,沿其侧棱和底边布设单条灯带,则需要灯带的总长度约为A. B.C. D.6.已知中,,则()A.1 B. C. D.7.已知集合A,则集合()A. B. C. D.8.设,是两条不同的直线,,是两个不同的平面,下列命题中正确的是()A.若,,,则B.若,,,则C.若,,,则D.若,,,则9.一艘海轮从A处出发,以每小时24海里的速度沿南偏东40°的方向直线航行,30分钟后到达B处,在C处有一座灯塔,海轮在A处观察灯塔,其方向是南偏东70°,在B处观察灯塔,其方向是北偏东65°,那么B,C两点间的距离是()A.6海里 B.6海里 C.8海里 D.8海里10.已知复数满足(是虚数单位),则=()A. B. C. D.11.祖暅原理:“幂势既同,则积不容异”.意思是说:两个同高的几何体,如在等高处的截面积恒相等,则体积相等.设、为两个同高的几何体,、的体积不相等,、在等高处的截面积不恒相等.根据祖暅原理可知,是的()A.充分不必要条件 B.必要不充分条件C.充要条件 D.既不充分也不必要条件12.已知复数满足,则的共轭复数是()A. B. C. D.二、填空题:本题共4小题,每小题5分,共20分。13.设、分别为椭圆:的左、右两个焦点,过作斜率为1的直线,交于、两点,则________14.函数满足,当时,,若函数在上有1515个零点,则实数的范围为___________.15.已知椭圆与双曲线有相同的焦点、,其中为左焦点.点为两曲线在第一象限的交点,、分别为曲线、的离心率,若是以为底边的等腰三角形,则的取值范围为________.16.已知,(,),则=_______.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(12分)已知.(1)若是上的增函数,求的取值范围;(2)若函数有两个极值点,判断函数零点的个数.18.(12分)已知函数.(1)时,求不等式解集;(2)若的解集包含于,求a的取值范围.19.(12分)已知椭圆,点为半圆上一动点,若过作椭圆的两切线分别交轴于、两点.(1)求证:;(2)当时,求的取值范围.20.(12分)为贯彻十九大报告中“要提供更多优质生态产品以满足人民日益增长的优美生态环境需要”的要求,某生物小组通过抽样检测植物高度的方法来监测培育的某种植物的生长情况.现分别从、、三块试验田中各随机抽取株植物测量高度,数据如下表(单位:厘米):组组组假设所有植株的生长情况相互独立.从、、三组各随机选株,组选出的植株记为甲,组选出的植株记为乙,组选出的植株记为丙.(1)求丙的高度小于厘米的概率;(2)求甲的高度大于乙的高度的概率;(3)表格中所有数据的平均数记为.从、、三块试验田中分别再随机抽取株该种植物,它们的高度依次是、、(单位:厘米).这个新数据与表格中的所有数据构成的新样本的平均数记为,试比较和的大小.(结论不要求证明)21.(12分)如图1,在边长为4的正方形中,是的中点,是的中点,现将三角形沿翻折成如图2所示的五棱锥.(1)求证:平面;(2)若平面平面,求直线与平面所成角的正弦值.22.(10分)在直角坐标系中,以坐标原点为极点,轴的正半轴为极轴建立极坐标系,曲线的极坐标方程为,曲线的极坐标方程为.(1)求曲线的直角坐标方程和曲线的参数方程;(2)设曲线与曲线在第二象限的交点为,曲线与轴的交点为,点,求的周长的最大值.

参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、D【解析】

如图所示建立直角坐标系,设,则,计算得到答案.【详解】如图所示建立直角坐标系,则,,,设,则.当,即时等号成立.故选:.【点睛】本题考查了向量的计算,建立直角坐标系利用坐标计算是解题的关键.2、C【解析】

根据循环结构的程序框图,带入依次计算可得输出为25时的值,进而得判断框内容.【详解】根据循环程序框图可知,则,,,,,此时输出,因而不符合条件框的内容,但符合条件框内容,结合选项可知C为正确选项,故选:C.【点睛】本题考查了循环结构程序框图的简单应用,完善程序框图,属于基础题.3、C【解析】

因为,,所以根据正弦定理可得,所以,,所以,其中,,因为存在最大值,所以由,可得,所以,所以,解得,所以正数的取值范围为,故选C.4、C【解析】

利用数量积的定义可得,即可判断出结论.【详解】解:,,,解得,,,解得,“”是“”的充分必要条件.故选:C.【点睛】本题主要考查平面向量数量积的应用,考查推理能力与计算能力,属于基础题.5、D【解析】

设胡夫金字塔的底面边长为,由题可得,所以,该金字塔的侧棱长为,所以需要灯带的总长度约为,故选D.6、C【解析】

以为基底,将用基底表示,根据向量数量积的运算律,即可求解.【详解】,,.故选:C.【点睛】本题考查向量的线性运算以及向量的基本定理,考查向量数量积运算,属于中档题.7、A【解析】

化简集合,,按交集定义,即可求解.【详解】集合,,则.故选:A.【点睛】本题考查集合间的运算,属于基础题.8、D【解析】试题分析:,,故选D.考点:点线面的位置关系.9、A【解析】

先根据给的条件求出三角形ABC的三个内角,再结合AB可求,应用正弦定理即可求解.【详解】由题意可知:∠BAC=70°﹣40°=30°.∠ACD=110°,∴∠ACB=110°﹣65°=45°,∴∠ABC=180°﹣30°﹣45°=105°.又AB=24×0.5=12.在△ABC中,由正弦定理得,即,∴.故选:A.【点睛】本题考查正弦定理的实际应用,关键是将给的角度、线段长度转化为三角形的边角关系,利用正余弦定理求解.属于中档题.10、A【解析】

把已知等式变形,再由复数代数形式的乘除运算化简得答案.【详解】解:由,得,.故选.【点睛】本题考查复数代数形式的乘除运算,考查复数的基本概念,是基础题.11、A【解析】

由题意分别判断命题的充分性与必要性,可得答案.【详解】解:由题意,若、的体积不相等,则、在等高处的截面积不恒相等,充分性成立;反之,、在等高处的截面积不恒相等,但、的体积可能相等,例如是一个正放的正四面体,一个倒放的正四面体,必要性不成立,所以是的充分不必要条件,故选:A.【点睛】本题主要考查充分条件、必要条件的判定,意在考查学生的逻辑推理能力.12、B【解析】

根据复数的除法运算法则和共轭复数的定义直接求解即可.【详解】由,得,所以.故选:B【点睛】本题考查了复数的除法的运算法则,考查了复数的共轭复数的定义,属于基础题.二、填空题:本题共4小题,每小题5分,共20分。13、【解析】

由椭圆的标准方程,求出焦点的坐标,写出直线方程,与椭圆方程联立,求出弦长,利用定义可得,进而求出。【详解】由知,焦点,所以直线:,代入得,即,设,,故由定义有,,所以。【点睛】本题主要考查椭圆的定义、椭圆的简单几何性质、以及直线与椭圆位置关系中弦长的求法,注意直线过焦点,位置特殊,采取合适的弦长公式,简化运算。14、【解析】

由已知,在上有3个根,分,,,四种情况讨论的单调性、最值即可得到答案.【详解】由已知,的周期为4,且至多在上有4个根,而含505个周期,所以在上有3个根,设,,易知在上单调递减,在,上单调递增,又,.若时,在上无根,在必有3个根,则,即,此时;若时,在上有1个根,注意到,此时在不可能有2个根,故不满足;若时,要使在有2个根,只需,解得;若时,在上单调递增,最多只有1个零点,不满足题意;综上,实数的范围为.故答案为:【点睛】本题考查利用导数研究函数的零点个数问题,涉及到函数的周期性、分类讨论函数的零点,是一道中档题.15、【解析】

设,由椭圆和双曲线的定义得到,根据是以为底边的等腰三角形,得到,从而有,根据,得到,再利用导数法求的范围.【详解】设,由椭圆的定义得,由双曲线的定义得,所以,因为是以为底边的等腰三角形,所以,即,因为,所以,因为,所以,所以,即,而,因为,所以在上递增,所以.故答案为:【点睛】本题主要考查椭圆,双曲线的定义和几何性质,还考查了运算求解的能力,属于中档题.16、【解析】

先利用倍角公式及差角公式把已知条件化简可得,平方可得.【详解】∵,∴,则,平方可得.故答案为:.【点睛】本题主要考查三角恒等变换,倍角公式的合理选择是求解的关键,侧重考查数学运算的核心素养.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17、(1)(2)三个零点【解析】

(1)由题意知恒成立,构造函数,对函数求导,求得函数最值,进而得到结果;(2)当时先对函数求导研究函数的单调性可得到函数有两个极值点,再证,.【详解】(1)由得,由题意知恒成立,即,设,,时,递减,时,,递增;故,即,故的取值范围是.(2)当时,单调,无极值;当时,,一方面,,且在递减,所以在区间有一个零点.另一方面,,设,则,从而在递增,则,即,又在递增,所以在区间有一个零点.因此,当时在和各有一个零点,将这两个零点记为,,当时,即;当时,即;当时,即:从而在递增,在递减,在递增;于是是函数的极大值点,是函数的极小值点.下面证明:,由得,即,由得,令,则,①当时,递减,则,而,故;②当时,递减,则,而,故;一方面,因为,又,且在递增,所以在上有一个零点,即在上有一个零点.另一方面,根据得,则有:,又,且在递增,故在上有一个零点,故在上有一个零点.又,故有三个零点.【点睛】本题考查函数的零点,导数的综合应用.在研究函数零点时,有一种方法是把函数的零点转化为方程的解,再把方程的解转化为函数图象的交点,特别是利用分离参数法转化为动直线与函数图象交点问题,这样就可利用导数研究新函数的单调性与极值,从而得出函数的变化趋势,得出结论.18、(1)(2)【解析】

(1)代入可得对分类讨论即可得不等式的解集;(2)根据不等式在上恒成立去绝对值化简可得再去绝对值即可得关于的不等式组解不等式组即可求得的取值范围【详解】(1)当时,不等式可化为,①当时,不等式为,解得;②当时,不等式为,无解;③当时,不等式为,解得,综上,原不等式的解集为.(2)因为的解集包含于,则不等式可化为,即.解得,由题意知,解得,所以实数a的取值范围是.【点睛】本题考查了绝对值不等式的解法分类讨论解绝对值不等式的应用,含参数不等式的解法.难度一般.19、(1)见解析;(2).【解析】

(1)分两种情况讨论:①两切线、中有一条切线斜率不存在时,求出两切线的方程,验证结论成立;②两切线、的斜率都存在,可设切线的方程为,将该直线的方程与椭圆的方程联立,由可得出关于的二次方程,利用韦达定理得出两切线的斜率之积为,进而可得出结论;(2)求出点、的坐标,利用两点间的距离公式结合韦达定理得出,换元,可得出,利用二次函数的基本性质可求得的取值范围.【详解】(1)由于点在半圆上,则.①当两切线、中有一条切线斜率不存在时,可求得两切线方程为,或,,此时;②当两切线、的斜率都存在时,设切线的方程为(、的斜率分别为、),,,,.综上所述,;(2)根据题意得、,,令,则,所以,当时,,当时,.因此,的取值范围是.【点睛】本题考查椭圆两切线垂直的证明,同时也考查了弦长的取值范围的计算,考查计算能力,属于中等题.20、(1);(2);(3).【解析】

设事件为“甲是组的第株植物”,事件为“乙是组的第株植物”,事件为“丙是组的第株植物”,、、、,可得出.(1)设事件为“丙的高度小于厘米”,可得,且、互斥,利用互斥事件的概率公式可求得结果;(2)设事件为“甲的高度大于乙的高度”,列举出符合题意的基本事件,利用互斥事件的概率加法公式可求得所求事件的概率;(3)根据题意直接判断和的大小即可.【详解】设事件为“甲是组的第株植物”,事件为“乙是组的第株植物”,事件为“丙是组

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论