版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
吉林省白山市第七中学2025届高二数学第一学期期末联考模拟试题注意事项:1.答题前,考生先将自己的姓名、准考证号码填写清楚,将条形码准确粘贴在条形码区域内。2.答题时请按要求用笔。3.请按照题号顺序在答题卡各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试卷上答题无效。4.作图可先使用铅笔画出,确定后必须用黑色字迹的签字笔描黑。5.保持卡面清洁,不要折暴、不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.直线与直线交于点Q,m是实数,O为坐标原点,则的最大值是()A.2 B.C. D.42.某市统计局网站公布了2017年至2020年该市政府部门网站的每年的两项访问量,数据如下:年度项目2017年2018年2019年2020年独立用户访问总量(单位:个)2512573924400060989网站总访问量(单位:次)23435370348194783219288下列表述中错误的是()A.2017年至2018年,两项访问量都增长幅度较大;B.2018年至2019年,两项访问量都有所回落;C.2019年至2020年,两项访问量都又有所增长;D.从数据可以看出,该市政府部门网站的两项访问量都呈逐年增长态势3.九连环是我国从古至今广为流传的一种益智游戏,它由九个铁丝圆环相连成串,按一定规则移动圆环的次数决定解开圆环的个数.在某种玩法中,用表示解开n(,)个圆环所需的最少移动次数,若数列满足,且当时,则解开5个圆环所需的最少移动次数为()A.10 B.16C.21 D.224.在等比数列中,,,则()A.2 B.4C.6 D.85.三棱柱中,,,,若,则()A. B.C. D.6.已知数列满足,且,那么()A. B.C. D.7.已知五个数据3,4,x,6,7的平均数是x,则该样本标准差为()A.1 B.C. D.28.已知点P是双曲线上的动点,过原点O的直线l与双曲线分别相交于M、N两点,则的最小值为()A.4 B.3C.2 D.19.已知双曲线的离心率为2,则C的渐近线方程为()A. B.C. D.10.数列满足,,,则数列的前10项和为()A.60 B.61C.62 D.6311.在等比数列中,是和的等差中项,则公比的值为()A.-2 B.1C.2或-1 D.-2或112.三个实数构成一个等比数列,则圆锥曲线的离心率为()A. B.C.或 D.或二、填空题:本题共4小题,每小题5分,共20分。13.椭圆的离心率是______14.空间直角坐标系中,点,的坐标分别为,,则___________.15.在锐角中,角A,B,C的对边分别为a,b,c.若,,,则的面积为_________16.若两平行直线3x-2y-1=0,6x+ay+c=0之间的距离为,则的值为________三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(12分)茶树根据其茶叶产量可分为优质茶树和非优质茶树,某茶叶种植研究小组选取了甲,乙两块试验田来检验某种茶树在不同的环境条件下的生长情况.研究人员将100株该种茶树幼苗在甲,乙两块试验田中进行种植,成熟后统计每株茶树的茶叶产量,将所得数据整理如下表所示:优质茶树非优质茶树甲试验田a25乙试验田10b已知甲试验田优质茶树的比例为50%(1)求表中a,b的值;(2)根据表中数据判断,是否有99%的把握认为甲,乙两块试验田的环境差异对茶树的生长有影响?附:,其中.0.100.050.01k2.7063.8416.63518.(12分)已知椭圆的离心率为,右焦点为F,且E上一点P到F的最大距离3(1)求椭圆E的方程;(2)若A,B为椭圆E上的两点,线段AB过点F,且其垂直平分线交x轴于H点,,求19.(12分)如图,在四棱锥中,平面ABCD,,,且,,.(1)求证:平面PAC;(2)已知点M是线段PD上的一点,且,当三棱锥的体积为1时,求实数的值.20.(12分)已知抛物线的焦点为,点在抛物线上,且的面积为(为坐标原点)(1)求抛物线的标准方程;(2)点、是抛物线上异于原点的两点,直线、的斜率分别为、,若,求证:直线恒过定点21.(12分)已知函数.(1)求曲线在点处的切线的方程.(2)若直线为曲线切线,且经过坐标原点,求直线的方程及切点坐标.22.(10分)证明:是无理数.(我们知道任意一个有理数都可以写成形如(m,n互质,)的形式)
参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、B【解析】求出两直线的交点坐标,结合两点间的距离公式得到,进而可以求出结果.【详解】因为与的交点坐标为所以,当时,,所以的最大值是,故选:B.2、D【解析】根据表格数据,结合各选项的描述判断正误即可.【详解】A:2017年至2018年,两项访问量分别增长、,显然增长幅度相较于后两年是最大的,正确;B:2018年至2019年,两项访问量相较于2017年至2018年都有回落,正确;C:2019年至2020年,两项访问量分别增长、,正确;D:由B分析知,该市政府部门网站的两项访问量在2018年至2019年有回落,而不是逐年增长态势,错误.故选:D.3、D【解析】根据题意,结合数列递推公式,代入计算即可.【详解】根据题意,由,得.故选:D.4、D【解析】由等比中项转化得,可得,求解基本量,由等比数列通项公式即得解【详解】设公比为,则由,得,即故,解得故选:D5、A【解析】利用空间向量线性运算及基本定理结合图形即可得出答案.【详解】解:由,,,若,得.故选:A.6、D【解析】由递推公式得到,,,再结合已知即可求解.【详解】解:由,得,,又,那么故选:D7、B【解析】先求出的值,然后利用标准差公式求解即可【详解】解:因为五个数据3,4,x,6,7的平均数是x,所以,解得,所以标准差,故选:B8、C【解析】根据双曲线的对称性可得为的中点,即可得到,再根据双曲线的性质计算可得;【详解】解:根据双曲线的对称性可知为的中点,所以,又在上,所以,当且仅当在双曲线的顶点时取等号,所以故选:C9、A【解析】根据离心率及a,b,c的关系,可求得,代入即可得答案.【详解】因为离心率,所以,所以,,则,所以C的渐近线方程为.故选:A10、B【解析】讨论奇偶性,应用等差、等比前n项和公式对作分组求和即可.【详解】当且为奇数时,,则,当且为偶数时,,则,∴.故选:B.11、D【解析】由题可得,即求.【详解】由题意,得,所以,因为,所以,解得或.故选:D.12、D【解析】根据三个实数构成一个等比数列,解得,然后分,讨论求解.【详解】因为三个实数构成一个等比数列,所以,解得,当时,方程表示焦点在x轴上的椭圆,所以,所以,当时,方程表示焦点在y轴上的双曲线,所以,所以,故选:D二、填空题:本题共4小题,每小题5分,共20分。13、【解析】求出、、的值,即可得出椭圆的离心率.【详解】在椭圆中,,,,因此,椭圆的离心率是.故答案为:.14、【解析】利用空间直角坐标系中两点间的距离公式计算即得.【详解】在空间直角坐标系中,因点,的坐标分别为,,所以.故答案为:15、【解析】根据求出,由向量数量积得到,使用余弦定理得到方程组,求出,利用面积公式求出结果.【详解】因为,所以,即,而因为是锐角三角形,所以,所以,所以,因为,所以,即,因为,所以,整理得:①,其中,即,因为,所以,即,解得:②,把②代入①得:,解得:,则的面积为.故答案为:16、±1【解析】由题意得=≠,∴a=-4且c≠-2,则6x+ay+c=0可化为3x-2y+=0,由两平行线间的距离公式,得=,解得c=2或c=-6,∴=±1三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17、(1);(2)有99%的把握认为甲、乙两块试验田的环境差异对茶树的生长有影响【解析】(1)根据即可求出,从而可得到;(2)根据独立性检验的基本思想求出的观测值,与6.635比较,即可判断【小问1详解】甲试验田优质茶树比例为50%,即,解得【小问2详解】,因为,故有99%的把握认为甲、乙两块试验田的环境差异对茶树的生长有影响18、(1);(2)【解析】(1)根据离心率和最大距离建立等式即可求解;(2)根据弦长,求出直线方程,解出点的坐标即可得解.【详解】(1)椭圆的离心率为,右焦点为F,且E上一点P到F的最大距离3,所以,所以,所以椭圆E的方程;(2)A,B为椭圆E上的两点,线段AB过点F,且其垂直平分线交x轴于H点,所以线段AB所在直线斜率一定存在,所以设该直线方程代入,整理得:,设,,,整理得:,当时,线段中点坐标,中垂线方程:,;当时,线段中点坐标,中垂线方程:,,综上所述:.19、(1)证明见解析(2)3【解析】(1)证明出,且,从而证明出线面垂直;(2)先用椎体体积公式求出,利用体积之比得到线段之比,从而得到的值.【小问1详解】证明:∵平面ABCD,且平面ABCD,∴.又因为,且,∴四边形ABCD为直角梯形.又因为,,易得,,∴,∴.又因为AC,PA是平面PAC的两条相交直线,∴平面PAC.【小问2详解】由(1)知且,∴.又∵平面ABCD,.又∵,∴,∴点M到平面ABC的距离为,∴,∴.20、(1);(2)证明见解析.【解析】(1)由点在抛物线上可得出,再利用三角形的面积公式可得出关于的等式,解出正数的值,即可得出抛物线的标准方程;(2)设点、,利用斜率公式结合已知条件可得出的值,分析可知直线不与轴垂直,可设直线的方程为,将该直线方程与抛物线的方程联立,利用韦达定理求出的值,即可得出结论.【小问1详解】解:抛物线的焦点为,由已知可得,则,,,解得,因此,抛物线的方程为.【小问2详解】证明:设点、,则,可得.若直线轴,则该直线与抛物线只有一个交点,不合乎题意.设直线的方程为,联立,可得,由韦达定理可得,可得,此时,合乎题意.所以,直线的方程为,故直线恒过定点.21、(1);(2)直线的方程为,切点坐标为.【解析】(1)先求导数,再根据导数几何意义得切线斜率,最后根据点斜式得结果,(2)设切点,根据导数几何意义得切线斜率,根据点斜式得切线方程,再根据切线过坐标原点解得结果.【详解】(1).所以在点处的切线的斜率,∴切线的方程为;(2)设切点为,则直线的斜率为,所以直线的方程为
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 致敬英雄团日活动
- 安全可怕的细菌
- 心脏病治疗护理
- 2022-2023学年山东省临沂市兰山区高二(下)期中地理试卷
- 湖北科技学院《医学影像物理学》2023-2024学年第一学期期末试卷
- 《泌尿生殖系统生理》课件
- 无理方程课件
- 《E现场管理课程》课件
- 怎样才能做好企业培训工作
- 《秘书礼仪课程介绍》课件
- 腮腺肿瘤术后护理查房
- 中外民歌欣赏(高中音乐课件)
- 2024年上海铁路局集团公司招聘笔试参考题库含答案解析
- 建筑工程行业的未来发展趋势
- 如何合理设置危化品储存区的紧急喷淋系统
- 护理查房与病例讨论
- 肩关节炎护理查房
- 2024届江苏省徐州市撷秀中学中考三模英语试题含答案
- “超级工程”-港珠澳大桥
- 【班级管理表格】学生检讨反思承诺书
- 公司物业服务投标方案(技术方案)
评论
0/150
提交评论