2025届四川省眉山一中高二数学第一学期期末质量检测模拟试题含解析_第1页
2025届四川省眉山一中高二数学第一学期期末质量检测模拟试题含解析_第2页
2025届四川省眉山一中高二数学第一学期期末质量检测模拟试题含解析_第3页
2025届四川省眉山一中高二数学第一学期期末质量检测模拟试题含解析_第4页
2025届四川省眉山一中高二数学第一学期期末质量检测模拟试题含解析_第5页
已阅读5页,还剩11页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

2025届四川省眉山一中高二数学第一学期期末质量检测模拟试题考生请注意:1.答题前请将考场、试室号、座位号、考生号、姓名写在试卷密封线内,不得在试卷上作任何标记。2.第一部分选择题每小题选出答案后,需将答案写在试卷指定的括号内,第二部分非选择题答案写在试卷题目指定的位置上。3.考生必须保证答题卡的整洁。考试结束后,请将本试卷和答题卡一并交回。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.在等差数列中,,,则数列的公差为()A.1 B.2C.3 D.42.已知正实数x,y满足4x+3y=4,则的最小值为()A. B.C. D.3.若函数,则单调增区间为()A. B.C. D.4.已知等差数列的前项和为,且,,则()A.3 B.5C.6 D.105.设双曲线:的左焦点和右焦点分别是,,点是右支上的一点,则的最小值为()A.5 B.6C.7 D.86.已知是两条不同的直线,是两个不同的平面,则下列结论正确的是()A.若,则 B.若,则C若,则 D.若,则7.已知等差数列满足,,则()A. B.C. D.8.已知方程表示双曲线,则实数的取值范围是()A.或 B.C. D.9.若动点在方程所表示的曲线上,则以下结论正确的是()①曲线关于原点成中心对称图形;②动点到坐标原点的距离的取值范围为;③动点与点的最小距离为;④动点与点的连线斜率的取值范围是.A.①② B.①②③C.③④ D.①②④10.若函数单调递增,则实数a的取值范围为()A. B.C. D.11.在等差数列{an}中,已知a1=2,a2+a3=13,则a4+a5+a6等于()A.40 B.42C.43 D.4512.设双曲线C:的左、右焦点分别为,点P在双曲线C上,若线段的中点在y轴上,且为等腰三角形,则双曲线C的离心率为()A B.2C. D.二、填空题:本题共4小题,每小题5分,共20分。13.过抛物线的准线上任意一点做抛物线的切线,切点分别为,则A点到准线的距离与点到准线的距离之和的最小值为___________14.已知O为坐标原点,,是抛物线上的两点,且满足,则______;若OM垂直AB于点M,且为定值,则点Q的坐标为__________.15.若“”是“”必要不充分条件,则实数的最大值为_______16.从编号为01,02,…,60的60个产品中用系统抽样的方法抽取一个样本,已知样本中的前两个编号分别为02,08(编号按从小到大的顺序排列),则样本中最大的编号是_________三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(12分)如图,已知圆C与y轴相切于点,且被x轴正半轴分成的两段圆弧长之比为1∶2(1)求圆C的方程;(2)已知点,是否存在弦被点P平分?若存在,求直线的方程;若不存在,请说明理由18.(12分)已知动圆过点且动圆内切于定圆:记动圆圆心的轨迹为曲线.(1)求曲线的方程;(2)若、是曲线上两点,点满足求直线的方程.19.(12分)已知抛物线C的焦点为,N为抛物线上一点,且(1)求抛物线C的方程;(2)过点F且斜率为k的直线l与C交于A,B两点,,求直线l的方程20.(12分)已知数列{}满足a1=1,a3+a7=18,且(n≥2)(1)求数列{}的通项公式;(2)若=·,求数列的前n项和21.(12分)已知椭圆的离心率为,点在椭圆上,直线与交于,两点(1)求椭圆的方程及焦点坐标;(2)若线段的垂直平分线经过点,求的取值范围22.(10分)如图,在四棱锥P﹣ABCD中,PA⊥平面ABCD,AD∥BC,AD⊥CD,且AD=CD=1,BC=2,PA=1(1)求证:AB⊥PC;(2)点M在线段PD上,二面角M﹣AC﹣D的余弦值为,求三棱锥M﹣ACP体积

参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、B【解析】将已知条件转化为的形式,由此求得.【详解】在等差数列中,设公差为d,由,,得,解得.故选:B2、A【解析】将4x+3y=4变形为含2x+1和3y+2的等式,即2(2x+1)+(3y+2)=8,再由换元法、基本不等式换“1”的代换求解即可【详解】由正实数x,y满足4x+3y=4,可得2(2x+1)+(3y+2)=8,令a=2x+1,b=3y+2,可得2a+b=8,∴,即,当且仅当时取等号,∴的最小值为.故选:A3、C【解析】求出导函数,令解不等式即可得答案.【详解】解:因为函数,所以,令,得,所以的单调增区间为,故选:C.4、B【解析】根据等差数列的性质,以及等差数列的前项和公式,由题中条件,即可得出结果.【详解】因为数列为等差数列,由,可得,,则.故选:B.【点睛】本题主要考查等差数列的性质,以及等差数列前项和的基本量运算,属于基础题型.5、C【解析】根据双曲线的方程求出的值,由双曲线的定义可得,由双曲线的性质可知,利用函数的单调性即可求得最小值.【详解】由双曲线:可得,,所以,所以,,由双曲线的定义可得,所以,所以,由双曲线的性质可知:,令,则,所以上单调递增,所以当时,取得最小值,此时点为双曲线的右顶点,即的最小值为,故选:C.6、C【解析】由空间中直线与直线、直线与平面、平面与平面的位置关系,逐一核对四个选项得答案【详解】解:对于A:若,则或,故A错误;对于B:若,则或与相交,故B错误;对于C:若,根据面面垂直的判定定理可得,故C正确;对于D:若则与平行、相交、或异面,故D错误;故选:C7、D【解析】根据等差数列的通项公式求出公差,再结合即可得的值.【详解】因为是等差数列,设公差为,所以,即,所以,所以,故选:D.8、A【解析】根据双曲线标准方程的性质,列出关于不等式,求解即可得到答案【详解】由双曲线的性质:,解的或,故选:A9、A【解析】将原方程等价变形为,将方程中的换为,换为,方程不变,可判断①;利用两点间的距离公式,结合二次函数知识可判断②和③;取特殊点可判断④.【详解】因为等价于,即,对于①,将方程中的换为,换为,方程不变,所以曲线关于原点成中心对称图形,故①正确;对于②,设,则动点到坐标原点的距离,因为,所以,故②正确;对于③,设,动点与点的距离为,因为函数在上递减,所以当时,函数取得最小值,从而取得最小值,故③不正确;对于④,当时,因为,所以,故④不正确.综上所述:结论正确的是:①②.故选:A10、D【解析】根据函数的单调性,可知其导数在R上恒成立,分离参数,即可求得答案.【详解】由题意可知单调递增,则在R上恒成立,可得恒成立,当时,取最小值-1,故,故选:D11、B【解析】根据已知求出公差即可得出.【详解】设等差数列的公差为,因为,,所以,则.故选:B.12、A【解析】根据是等腰直角三角形,再表示出的长,利用三角形的几何性质即可求得答案.【详解】线段的中点在y轴上,设的中点为M,因为O为的中点,所以,而,则,为等腰三角形,故,由,得,又为等腰直角三角形,故,即,解得,即,故选:A.二、填空题:本题共4小题,每小题5分,共20分。13、8【解析】设,,,,由可得,根据导数的几何意义求得两切线的方程,联立求得点的坐标,再根到准线的距离转化为到焦点的距离,三点共线时距离最小,进而求出最小值【详解】解:设,,,,由可得,所以,所以直线,的方程分别为:,,联立,解得,即,,又有在准线上,所以,所以,设直线的方程为:,代入抛物线的方程可得:,可得,所以可得,即直线恒过点,即直线恒过焦点,即直的方程为:,代入抛物线的方程:,,所以,点到准线的距离与点到准线的距离之和,所以当时,距离之和最小且为8,这时直线平行于轴故答案为:814、①.-24②.【解析】由抛物线的方程及数量积的运算可求出,设直线AB的方程为,联立抛物线方程,由根与系数的关系可求出,由圆的定义求出圆心即可.【详解】由,即解得或(舍去).设直线AB的方程为.由,消去x并整理得,.又,,直线AB恒过定点N(6,0),OM垂直AB于点M,点M在以ON为直径圆上.|MQ|为定值,点Q为该圆的圆心,又即Q(3,0).故答案为:;15、【解析】设的解集为集合,由题意可得是的真子集,即可求解.【详解】由得或,因为“”是“”的必要不充分条件,设或,,因为“”是“”的必要不充分条件,所以是的真子集,所以故答案为:【点睛】结论点睛:本题考查充分不必要条件的判断,一般可根据如下规则判断:(1)若是的必要不充分条件,则对应集合是对应集合的真子集;(2)是的充分不必要条件,则对应集合是对应集合的真子集;(3)是的充分必要条件,则对应集合与对应集合相等;(4)是的既不充分又不必要条件,对的集合与对应集合互不包含16、56【解析】根据系统抽样的定义得到编号之间的关系,即可得到结论.【详解】由已知样本中的前两个编号分别为02,08,则样本数据间距为,则样本容量为,则对应的号码数,则当时,x取得最大值为56故答案为:56三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17、(1).(2).【解析】(1)由已知得圆心C在直线上,设圆C与x轴的交点分别为E、F,则有,,圆心C的坐标为(2,1),由此求得圆C的标准方程;(2)假设存在弦被点P平分,有,由此求得直线AB的斜率可得其方程再检验,直线AB与圆C是否相交即可.小问1详解】解:因为圆C与y轴相切于点,所以圆心C在直线上,设圆C与x轴的交点分别为E、F,由圆C被x轴分成的两段弧长之比为2∶1,得,所以,圆心C的坐标为(2,1),所以圆C的方程为;【小问2详解】解:因为点,有,所以点P在圆C的内部,假设存在弦被点P平分,则,又,所以,所以直线AB的方程为,即,检验,圆心C到直线AB的距离为,所以直线AB与圆C相交,所以存在弦被点P平分,此时直线的方程为.18、(1);(2).【解析】(1)根据两圆内切,以及圆过定点列式求轨迹方程;(2)利用重心坐标公式可知,,再设直线的方程为与椭圆方程联立,利用根与系数的关系求解直线方程.【详解】(1)由已知可得,两式相加可得则点的轨迹是以、为焦点,长轴长为的椭圆,则因此曲线的方程是(2)因为,则点是的重心,易得直线的斜率存在,设直线的方程为,联立消得:且①②由①②解得则直线的方程为即【点睛】本题考查直线与椭圆的问题关系,本题的关键是根据求得,.19、(1)(2)或【解析】(1)抛物线的方程为,利用抛物线的定义求出点N,代入抛物线方程即可求解.(2)设直线的方程为,将直线与抛物线方程联立,利用韦达定理以及焦半径公式可得或,即求.【小问1详解】抛物线的方程为,设,依题意,由抛物线定义,即.所以,又由,得,解得(舍去),所以抛物线的方程为.【小问2详解】由(1)得,设直线的方程为,,,由,得.因为,故所以.由题设知,解得或,因此直线方程为或.20、(1);(2)【解析】(1)由等差中项可知数列是等差数列,根据已知可求得其公差,从而可得其通项公式;(2)分析可知应用错位相减法求数列的和【详解】(1)由知,数列是等差数列,设其公差为,则,所以,,即数列的通项公式为(2),,,两式相减得:,整理得:,所以21、(1),(2)【解析】(1)由题意,列出关于a,b,c的方程组求解即可得答案;(2)设M(x1,y1),N(x2,y2),线段MN的中点(x0,y0),则,作差可得①,又线段MN的垂直平分线过点A(0,1),则②,联立直线MN与椭圆的方程,可得﹣t2+1+4k2>0(*),③,由①②③及(*)式联立即可求解【小问1详解】解:由题意可得,解得,所以椭圆C的方程为,焦点坐标为【小问2详解】解:设M(x1,y1),N(x2,y2),线段MN的中点(x0,y0),因为,所以,即,所以①,因为线段MN的垂直平分线过点A(0,1),所以,即②,联立,得(1+4k2)x2+8ktx+4t2﹣4=0,所以=(8kt)2﹣4(1+4k2)(4t2﹣4)=﹣16t2+16+64k2>0,即﹣t2+1+4k2>0(*),③,把③代入②,得④,把③④代入①得,所以,即,代入(*)得,解得,又k≠0,所以k的取值范围为22、(1)证明见解析(2)【解析】(1)将问题转化为证明AB⊥平面PAC,然后结合已知可证;(2)建立空间直角坐标系,用向量法结合已知先确定点M位置,然后转化法求体积可得.【小问1详解】由题意得四边形ADCB是

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论