版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2025届云南省丽江市古城二中高二上数学期末统考模拟试题请考生注意:1.请用2B铅笔将选择题答案涂填在答题纸相应位置上,请用0.5毫米及以上黑色字迹的钢笔或签字笔将主观题的答案写在答题纸相应的答题区内。写在试题卷、草稿纸上均无效。2.答题前,认真阅读答题纸上的《注意事项》,按规定答题。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.如图,在长方体中,,,则直线和夹角的余弦值为()A. B.C. D.2.设是定义在R上的可导函数,若(为常数),则()A. B.C. D.3.函数是偶函数且在上单调递减,,则的解集为()A. B.C. D.4.《莱因德纸草书》是世界上最古老的数学著作之一,书中有一道这样的类似问题:把150个完全相同的面包分给5个人,使每个人所得面包数成等差数列,且使较大的三份面包数之和的是较小的两份之和,则最大的那份面包数为()A.30 B.40C.50 D.605.抛物线的焦点为F,准线为l,点P是准线l上的动点,若点A在抛物线C上,且,则(O为坐标原点)的最小值为()A. B.C. D.6.设等比数列的前项和为,且,则()A. B.C. D.7.是直线与直线互相平行的()条件A.必要而不充分 B.充分而不必要C.充要 D.既不充分也不必要8.在长方体中,()A. B.C. D.9.已知平面,的法向量分别为,,则()A. B.C.,相交但不垂直 D.,的位置关系不确定10.“且”是“”的()A.充分不必要条件 B.必要不充分条件C充要条件 D.既不充分也不必要条件11.已知双曲线,其渐近线方程为,则a的值为()A. B.C. D.212.已知点在抛物线:上,点为抛物线的焦点,,点P到y轴的距离为4,则抛物线C的方程为()A. B.C. D.二、填空题:本题共4小题,每小题5分,共20分。13.已知函数,则的值为______14.如图,抛物线上的点与轴上的点构成等边三角形,,,其中点在抛物线上,点的坐标为,,猜测数列的通项公式为________15.在等比数列中,,则______16.在中,,,,则__________.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(12分)如图,在直三棱柱中,,,,为的中点,点,分别在棱,上,,.(1)求点到直线的距离(2)求平面与平面夹角的余弦值.18.(12分)国家助学贷款由国家指定的商业银行面向在校全日制高等学校经济困难学生发放.用于帮助他们支付在校期间的学习和日常生活费.从年秋季学期起,全日制普通本专科学生每人每年申请贷款额度由不超过元提高至不超过元,助学贷款偿还本金的宽限期从年延长到年.假如学生甲在本科期间共申请到元的助学贷款,并承诺在毕业后年内还清,已知该学生毕业后立即参加工作,第一年的月工资为元,第个月开始,每个月工资比前一个月增加直到元,此后工资不再浮动.(1)学生甲参加工作后第几个月的月工资达到元;(2)如果学生甲从参加工作后的第一个月开始,每个月除了偿还应有的利息外,助学贷款的本金按如下规则偿还:前个月每个月偿还本金元,第个月开始到第个月每个月偿还的本金比前一个月多元,第个月偿还剩余的本金.则他第个月的工资是否足够偿还剩余的本金.(参考数据:;;)19.(12分)小张在2020年初向建行贷款50万元先购房,银行贷款的年利率为4%,要求从贷款开始到2030年要分10年还清,每年年底等额归还且每年1次,每年至少要还多少钱呢(保留两位小数)?(提示:(1+4%)10≈1.48)20.(12分)已知椭圆的一个焦点坐标为,离心率为(1)求椭圆C的标准方程;(2)O为坐标原点,点P在椭圆C上,若的面积为,求点P的坐标21.(12分)设命题,,命题,.若p、q都为真命题,求实数m的取值范围.22.(10分)四棱锥中,平面,四边形为平行四边形,(1)若为中点,求证平面;(2)若,求面与面的夹角的余弦值.
参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、D【解析】如图建立空间直角坐标系,分别求出的坐标,由空间向量夹角公式即可求解.【详解】如图:以为原点,分别以,,所在的直线为,,轴建立空间直角坐标系,则,,,,所以,,所以,所以直线和夹角的余弦值为,故选:D.2、C【解析】根据导数的定义即可求解.【详解】.故选:C.3、D【解析】分析可知函数在上为增函数,且有,将所求不等式变形为,可得出关于实数的不等式,由此可解得实数的取值范围.【详解】因为函数是偶函数且在上单调递减,则该函数在上为增函数,且,由可得,所以,,可得或,解得或.因此,不等式的解集为.故选:D.4、C【解析】根据题意得到递增等差数列中,,,从而化成基本量,进行计算,再计算出,得到答案.【详解】根据题意,设递增等差数列,首项为,公差,则所以解得所以最大项.故选:C5、D【解析】依题意得点坐标,作点关于的对称点,则,求即为最小值【详解】如图所示:作点关于的对称点,连接,设点,不妨设,由题意知,直线l方程为,则,得所以,得,所以由,当三点共线时取等号,又所以最小值为故选:D6、C【解析】根据给定条件求出等比数列公比q的关系,再利用前n项和公式计算得解.【详解】设等比数列的的公比为q,由得:,解得,所以.故选:C7、B【解析】求出直线与平行的等价条件,再利用充分条件、必要条件的定义判断作答.【详解】由解得或,当时,与平行,当时,与平行,则直线与直线平行等价于或,所以是直线与直线互相平行的充分而不必要条件.故选:B8、D【解析】根据向量的运算法则得到,带入化简得到答案.【详解】在长方体中,易知,所以.故选:D.9、C【解析】利用向量法判断平面与平面的位置关系.【详解】因为平面,的法向量分别为,,所以,即不垂直,则,不垂直,因为,即即不平行,则,不平行,所以,相交但不垂直,故选:C10、A【解析】按照充分必要条件的判断方法判断,“且”能否推出“”,以及“”能否推出“且”,判断得到正确答案,【详解】当且时,成立,反过来,当时,例:,不能推出且.所以“且”是“”的充分不必要条件.故选:A【点睛】本题考查充分不必要条件的判断,重点考查基本判断方法,属于基础题型.11、A【解析】由双曲线方程,根据其渐近线方程有,求参数值即可.【详解】由渐近线,结合双曲线方程,∴,可得.故选:A.12、D【解析】由抛物线定义可得,注意开口方向.详解】设∵点P到y轴的距离是4∴∵,∴.得:.故选:D.二、填空题:本题共4小题,每小题5分,共20分。13、【解析】先求出的导函数,然后将代入可得答案.【详解】,所以故答案为:14、【解析】求出,,,,,,可猜测,利用累加法,即可求解【详解】的方程为,代入抛物线可得,同理可得,,,,可猜测,证明:记三角形的边长为,由题意可知,当时,在抛物线上,可得,当时,,两式相减得:化简得:,则数列是等差数列,,,,,故答案为:15、【解析】利用等比数列性质和通项公式可求得,根据可求得结果.【详解】,又,,.故答案为:.16、【解析】由已知在中利用余弦定理可得的值,可求,可得,即可得解的值【详解】解:因为在中,,,,所以由余弦定理可得,所以,即,则故答案为:三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17、(1);(2).【解析】(1)由直棱柱的性质及勾股定理求出△各边长,应用余弦定理求,进而可得其正弦值,再求边上的高即可.(2)以为原点,,,所在直线为x轴、y轴、z轴,建立空间直角坐标系,然后求出两个平面的法向量,然后可算出答案.【小问1详解】如图,连接,由题设,,,,由直棱柱性质及,在中,在中,在中,在中,所以在△中,,则,所以到直线的距离.【小问2详解】以为原点,,,所在直线为x轴、y轴、z轴,建立如图所示的空间直角坐标系易知:,,,则,因为平面,所以平面的一个法向量为设平面的法向量为,则,取,则,所以,即平面与平面的夹角的余弦值为18、(1);(2)不能,理由见解析.【解析】(1)设甲参加工作后第个月的月工资达到元,根据已知条件可得出关于的不等式,结合参考数据可求得结果;(2)分析可知从第个月开始到第个月偿还的本金是首项为为首项,以为公差的等差数列,计算出甲前个月偿还的本金,再由甲第个月的工资可得出结论.【小问1详解】解:设甲参加工作后第个月的月工资达到元,则,可得,,解得,所以,学生甲参加工作后第个月的月工资达到元.【小问2详解】解:因为甲前个月每个月偿还本金元,第个月开始到第个月每个月偿还的本金比前一个月多元,所以,从第个月开始到第个月偿还的本金是首项为为首项,以为公差的等差数列,所以,前个月偿还的本金为,因为第个月开始,每个月工资比前一个月增加直到元,所以,第个月的工资为元,因为,因此,甲第个月的工资不能足够偿还剩余的本金.19、每年至少要还6.17万元.【解析】根据贷款总额和还款总额相等,50(1+4%)10=x·(1+4%)9+x·(1+4%)8+…+x,求解即可.【详解】50万元10年产生本息和与每年还x万元的本息和相等,故有购房款50万元十年的本息和:50(1+4%)10,每年还x万元的本息和:x·(1+4%)9+x·(1+4%)8+…+x=,从而有50(1+4%)10=,解得x≈6.17,即每年至少要还6.17万元.20、(1)(2)或或或【解析】(1)根据已知条件求得,由此求得椭圆的标准方程.(2)根据三角形的面积列方程,化简求得点的坐标.【小问1详解】设椭圆C的焦距为,由题意有,得,,故椭圆C的标准方程为;【小问2详解】设点P的坐标为,由的面积为,有,得,有,得,故点P的坐标为或或或21、【解析】先求出命题为真时,的取值范围,再取交集可得答案.【详解】若命题,为真命题,则,解得;若命题,为真命题,则命题,为假命题,即方程无实数根,因此,,解得.又p、q都为真命题,所以实数m的取值范围是.【点睛】本题考查全称命题与特称命题的真假求参数值、一元二次函数的性质,考查函数与方程思想、转化与化归思想,考查逻辑推理能力和运算
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 烟台理工学院《程序设计基础(1)》2021-2022学年第一学期期末试卷
- 投资风险防控计划
- 资产负债管理方案计划
- 许昌学院《三维设计基础》2021-2022学年第一学期期末试卷
- 徐州工程学院《文案设计》2021-2022学年第一学期期末试卷
- 徐州工程学院《软件项目管理》2023-2024学年第一学期期末试卷
- 提高公司财务团队服务水平的培训计划
- 小班早期阅读推广策略计划
- 幼儿园教研活动的评估与反思计划
- 职业生涯转型与新年计划
- 2024届研究生入学考试政治理论知识全真模拟试卷及答案(共七套)
- 《大数据会计基础》测验题
- 烃自由基结构、稳定性和烷烃氯代反应选择性的理论研究
- 医院检验外送标本规章制度
- 7.2-共建美好集体-(课件)2024-2025学年七年级道德与法治上册统编版
- 《中华人民共和国道路运输条例》知识专题培训
- 三农产品电商三农村电商可持续发展战略规划手册
- 2024年内江隆昌市公安局招考聘用警务辅助人员30人高频难、易错点500题模拟试题附带答案详解
- 【课件】第七单元能源的合理利用与开发新版教材单元分析-九年级化学人教版(2024)上册
- 2024年认证行业法律法规及认证基础知识 CCAA年度确认 试题与答案
- 医院应急预案演练评估报告
评论
0/150
提交评论