版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2025届河南省开封十中高二数学第一学期期末联考模拟试题注意事项:1.答题前,考生先将自己的姓名、准考证号填写清楚,将条形码准确粘贴在考生信息条形码粘贴区。2.选择题必须使用2B铅笔填涂;非选择题必须使用0.5毫米黑色字迹的签字笔书写,字体工整、笔迹清楚。3.请按照题号顺序在各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试题卷上答题无效。4.保持卡面清洁,不要折叠,不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.某校去年有1100名同学参加高考,从中随机抽取50名同学总成绩进行分析,在这个调查中,下列叙述错误的是A.总体是:1100名同学的总成绩 B.个体是:每一名同学C.样本是:50名同学的总成绩 D.样本容量是:502.已知数列中,其前项和为,且满足,数列的前项和为,若对恒成立,则实数的值可以是()A. B.2C.3 D.3.在某次赛车中,名参赛选手的成绩(单位:)全部介于到之间(包括和),将比赛成绩分为五组:第一组,第二组,···,第五组,其频率分布直方图如图所示.若成绩在内的选手可获奖,则这名选手中获奖的人数为A. B.C. D.4.在等差数列中,其前项和为.若,是方程的两个根,那么的值为()A.44 B.C.66 D.5.点A是曲线上任意一点,则点A到直线的最小距离为()A. B.C. D.6.抛物线的焦点坐标A. B.C. D.7.如图,在平行六面体中,M为与的交点,若,,,则下列向量中与相等的向量是()A. B.C. D.8.若,则()A.1 B.2C.4 D.89.已知数列满足,,则()A. B.C. D.10.在四棱锥中,底面是正方形,为的中点,若,则()A B.C. D.11.已知正三棱柱的侧棱长与底面边长相等,则AB1与侧面ACC1A1所成角的正弦值等于A. B.C. D.12.某次数学考试试卷评阅采用“双评+仲裁”的方式,规则如下:两位老师独立评分,称为一评和二评,当两者所评分数之差的绝对值小于或等于分时,取两者平均分为该题得分;当两者所评分数之差的绝对值大于分时,再由第三位老师评分,称之为仲裁,取仲裁分数和一、二评中与之接近的分数的平均分为该题得分.如图所示,当,,时,则()A. B.C.或 D.二、填空题:本题共4小题,每小题5分,共20分。13.甲乙参加摸球游戏,袋子中装有3个黑球和1个白球,球的大小、形状、质量等均一样,若从袋中有放回地取1个球,再取1个球,若取出的两个球同色,则甲胜,若取出的两个球不同色则乙胜,求乙获胜的概率为_____14.已知直线l是抛物线()的准线,半径为的圆过抛物线的顶点O和焦点F,且与l相切,则抛物线C的方程为___________;若A为C上一点,l与C的对称轴交于点B,在中,,则的值为___________.15.写出一个离心率且焦点在轴上的双曲线的标准方程________,并写出该双曲线的渐近线方程________16.若向量,,,且向量,,共面,则______三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(12分)在直角坐标系中,直线的参数方程为(为参数).以原点O为极点,x轴的正半轴为极轴建立极坐标系,曲线C的极坐标方程为.(1)求直线的普通方程,曲线C的直角坐标方程;(2)设直线与曲线C相交于A,B两点,点,求的值.18.(12分)已知椭圆:的一个焦点与曲线的焦点重合,且离心率为.(1)求椭圆的方程(2)设直线:交椭圆于M,N两点.①若且的面积为,求的值.②若轴上的任意一点到直线与直线(为椭圆的右焦点)的距离相等,求证:直线恒过定点,并求出该定点坐标19.(12分)设:函数的定义域为;:不等式对任意的恒成立(1)如果是真命题,求实数的取值范围;(2)如果“”为真命题,“”为假命题,求实数的取值范围20.(12分)已知圆C:,直线l:.(1)当a为何值时,直线l与圆C相切;(2)当直线l与圆C相交于A,B两点,且|AB|=时,求直线l的方程.21.(12分)如图所示,在正方体中,点,,分别是,,的中点(1)证明:;(2)求直线与平面所成角的大小22.(10分)如图,四棱锥的底面是正方形,PD⊥底面ABCD,M为BC的中点,(1)证明:;(2)设平面平面,求l与平面MND所成角的正弦值
参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、B【解析】采用逐一验证法,根据总体,个体,样本的概念,可得结果.【详解】据题意:总体是1100名同学的总成绩,故A正确个体是每名同学的总成绩,故B错样本是50名同学的总成绩,故C正确样本容量是:50,故D正确故选:B【点睛】本题考查总体,个体,样本的概念,属基础题.2、D【解析】由求出,从而可以求,再根据已知条件不等式恒成立,可以进行适当放大即可.【详解】若n=1,则,故;若,则由得,故,所以,,又因为对恒成立,当时,则恒成立,当时,,所以,,,若n为奇数,则;若n为偶数,则,所以所以,对恒成立,必须满足.故选:D3、A【解析】先根据频率分布直方图确定成绩在内的频率,进而可求出结果.【详解】由题意可得:成绩在内的频率为,又本次赛车中,共名参赛选手,所以,这名选手中获奖的人数为.故选A【点睛】本题主要考查频率分布直方图,会根据频率分布直方图求频率即可,属于常考题型.4、D【解析】由,是方程的两个根,利用韦达定理可知与的和,根据等差数列的性质可得与的和等于,即可求出的值,然后再利用等差数列的性质可知等于的11倍,把的值代入即可求出的值.【详解】因为,是方程的两个根,所以,而,所以,则,故选:.5、A【解析】动点在曲线,则找出曲线上某点的斜率与直线的斜率相等的点为距离最小的点,利用导数的几何意义即可【详解】不妨设,定义域为:对求导可得:令解得:(其中舍去)当时,,则此时该点到直线的距离为最小根据点到直线的距离公式可得:解得:故选:A6、B【解析】由抛物线方程知焦点在x轴正半轴,且p=4,所以焦点坐标为,所以选B7、A【解析】利用空间向量的三角形法则可得,结合平行六面体的性质分析解答【详解】平行六面体中,M为与的交点,,,,则有:,所以.故选:A8、D【解析】由题意结合导数的运算可得,再由导数的概念即可得解.【详解】由题意,所以,所以.故选:D.9、A【解析】根据递推关系依次求出即可.【详解】,,,,,.故选:A.10、C【解析】由为的中点,根据向量的运算法则,可得,即可求解.【详解】由底面是正方形,E为的中点,且,根据向量的运算法则,可得.故选:C.11、C【解析】过作,连接,由于,故平面,所以所求直线与平面所成的角为,设棱长为,则,故,.点睛:本题主要考查空间立体几何直线与平面的位置关系,考查直线与平面所成的角,考查线面垂直的证明方法和常见几何体的结构特征.由于题目所给几何体为直三棱柱,故侧棱和底面垂直,这是一个重要的隐含条件,通过作交线的垂线,即可得到高,由此作出二面角的平面角.12、B【解析】按照框图考虑成立和不成立即可求解.【详解】因为,,,所以输入,当成立时,,即,解得,,满足条件;当不成立时,,即,解得,,不满足条件;故.故选:B.二、填空题:本题共4小题,每小题5分,共20分。13、##0.375【解析】先算出有放回地取两次的取法数,再算出取出两球不同色的取法数,根据古典概型的概率公式计算即可求得答案.【详解】有放回地取两球,共有种取法,两次取球不同色的取法有种,故乙获胜的概率为,故答案为:14、①.②.【解析】(1)由题意得:圆的圆心横坐标为,半径为,列方程,即可得到答案;(2)由正弦定理得,从而求得直线的方程,求出点的坐标,即可得到答案;【详解】由题意得:圆的圆心横坐标为,半径为,,抛物线C的方程为;设到准线的距离为,,,,,代入,解得:,,,故答案为:;15、①.(答案不唯一)②.(答案不唯一)【解析】令双曲线为,根据离心率可得,结合双曲线参数关系写出一个符合要求的双曲线方程,进而写出对应的渐近线方程.【详解】由题设,可令双曲线为且,∴,则,故为其中一个标准方程,此时渐近线方程为.故答案为:,(答案不唯一).16、##【解析】由向量共面的性质列出方程组求解即可.【详解】因为,,共面,所以存在实数x,y,使得,得,解得∴故答案为:三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17、(1)直线的普通方程为;曲线C的直角坐标方程为(2)【解析】(1)根据转换关系将参数方程和极坐标方程转化为直角坐标方程即可;(2)将直线的参数方程化为标准形式,代入曲线C的直角坐标方程,设点A,B对应的参数分别为,利用韦达定理即可得出答案.【小问1详解】解:将直线的参数方程中的参数消去得,则直线的普通方程为,由曲线C的极坐标方程为,得,即,由得曲线C的直角坐标方程为;【小问2详解】解:点满足,故点在直线上,将直线的参数方程化为标准形式(为参数),代入曲线C的直角坐标方程为,得,设点A,B对应的参数分别为,则,所以.18、(1)(2)①;②证明见解析,定点的坐标为【解析】(1)由所给条件确定基本量即可.(2)①代入消元,韦达定理整体思想,列出关于的方程从而得解;②由已知可知,得到关于、的一次关系式可得证.【小问1详解】由已知椭圆的右焦点坐标为,,所以,椭圆的方程:【小问2详解】①将与椭圆方程联立得.设,,则,解得,∴,,点到直线的距离为,∴,解得(舍去负值),∴.②设,,将与椭圆方程联立,得,当时,∴,,,若轴上任意一点到直线与的距离均相等,则轴为直线与的夹角的平分线,∴,即,∴.∴,解得.∴.∴直线恒过一定点,该定点的坐标为.19、(1)(2)【解析】(1)由对数函数性质,转化为对任意的恒成立,结合二次函数的性质,即可求解;(2)利用基本不等式,求得当命题是真命题,得到,结合“”为真命题,“”为假命题,分类讨论,即可求解.【小问1详解】解:因为是真命题,所以对任意的恒成立,当时,不等式,显然在不能恒成立;当时,则满足解得,故实数的取值范围为【小问2详解】解:因为,所以,当且仅当时,等号成立若是真命题,则;因为“”为真命题,“”为假命题,所以与一真一假当真假时,所以;当假真时,所以,综上,实数的取值范围为20、(1);(2)或.【解析】(1)由题设可得圆心为,半径,根据直线与圆的相切关系,结合点线距离公式列方程求参数a的值即可.(2)根据圆中弦长、半径与弦心距的几何关系列方程求参数a,即可得直线方程.【小问1详解】由圆:,可得,其圆心为,半径,若直线与圆相切,则圆心到直线距离,即,可得:.【小问2详解】由(1)知:圆心到直线的距离,因为,即,解得:,所以,整理得:,解得:或,则直线为或.21、(1)证明见解析(2)【解析】(1)连接,可得,从而可证四边形是平行四边形,从而证明结论.(2)以为坐标原点,分别以,,所在直线为,,轴,建立空间直角坐标系,利用向量法求解线面角.【小问1详解】如图,连接在正方体中,且因为,分别是,的中点,所以且又因为是的中点,所以,且,所以四边形是平行四边形,所以【小问2详解】以为坐标原点,分别以,,所在直线为,,轴,建立如图所示的空间直角坐标系设,则,,,,,,设为平面的法向量因为,,,所以令,得设直线与平面所成角为,则因为,所以直线与平面所成角的大小为22、(1)证明见解析(2)【解析】(1)建立空间直角坐标系,利用向量法证得.(2)利用向量法求得与平面所成角的正弦值.【小问1详解】∵
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 气动棘轮扳手市场环境与对策分析
- 油剂项目评价分析报告
- 一条保护环境的标语
- 指纹挂锁项目评价分析报告
- 屠宰机相关项目建议书
- 2024年新型节水设备项目立项申请报告模范
- 汉字课程设计教程书
- 2024年影像扫描仪项目申请报告模范
- 冷却液温度传感器相关项目实施方案
- 改善睡眠训练课程设计
- 县总工会开展资产监督管理工作自查报告
- 小区业主委员会的设立申请书(全套资料)
- 中海油班组长管理方法与工具课件
- (完整版)初中数学知识点思维导图(北师大版)
- (完整版)太阳能LED路灯毕业论文.doc
- 小数乘除法100道
- 微波测量概述及信号源测量技术:11射频电缆连接器第11章
- 某城市道路桥梁工程钻孔灌注桩基础施工方案(反循环钻孔灌注桩)
- 慈善工作情况调查报告
- VI规划设计收费报价单
- 中等职业学校校企合作方案
评论
0/150
提交评论