福建省平和县一中2025届高一上数学期末综合测试试题含解析_第1页
福建省平和县一中2025届高一上数学期末综合测试试题含解析_第2页
福建省平和县一中2025届高一上数学期末综合测试试题含解析_第3页
福建省平和县一中2025届高一上数学期末综合测试试题含解析_第4页
福建省平和县一中2025届高一上数学期末综合测试试题含解析_第5页
已阅读5页,还剩8页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

福建省平和县一中2025届高一上数学期末综合测试试题请考生注意:1.请用2B铅笔将选择题答案涂填在答题纸相应位置上,请用0.5毫米及以上黑色字迹的钢笔或签字笔将主观题的答案写在答题纸相应的答题区内。写在试题卷、草稿纸上均无效。2.答题前,认真阅读答题纸上的《注意事项》,按规定答题。一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1.角的终边过点,则()A. B.C. D.2.若,则的值为A. B.C. D.3.在正方体中,异面直线与所成的角为()A.30° B.45°C.60° D.90°4.下列命题中正确的是()A.若,则 B.若,则C.若,则 D.若,则5.函数的图象可能是A. B.C. D.6.已知光线每通过一块特制玻璃板,强度要减弱,要使通过玻璃板光线强度减弱到原来的以下,则至少需要重叠玻璃版块数为(参考数据:)()A.4 B.5C.6 D.77.已知集合,下列选项正确的是()A. B.C. D.8.“幸福感指数”是指某个人主观地评价自己对目前生活状态的满意程度的指标.常用区间内的一个数来表示,该数越接近表示满意度越高.甲、乙两位同学分别随机抽取位本地市民,调查他们的幸福感指数,甲得到位市民的幸福感指数分别为,,,,,,,,,,乙得到位市民的幸福感指数的平均数为,方差为,则这位市民幸福感指数的方差为()A. B.C. D.9.若方程表示圆,则实数的取值范围为()A. B.C. D.10.全集,集合,则()A. B.C. D.二、填空题:本大题共6小题,每小题5分,共30分。11.求值:______.12.已知函数,则的单调递增区间是______13.如图,正方形ABCD中,M,N分别是BC,CD中点,若,则______.14.写出一个周期为且值域为的函数解析式:_________15.若,则_________.16.关于的不等式的解集是________三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17.某地政府为增加农民收人,根据当地地域特点,积极发展农产品加工业.经过市场调查,加工某农产品需投入固定成本3万元,每加工吨该农产品,需另投入成本万元,且已知加工后的该农产品每吨售价为10万元,且加工后的该农产品能全部销售完.(1)求加工后该农产品的利润(万元)与加工量(吨)的函数关系式;(2)求加工后的该农产品利润的最大值.18.已知函数的最小值为1.(1)求的值;(2)求函数的最小正周期和单调递增区间.19.已知函数是定义在上的偶函数,当时,(1)求的解析式;(2)解不等式20.阅读材料:我们研究了函数的单调性、奇偶性和周期性,但是这些还不能够准确地描述出函数的图象,例如函数和,虽然它们都是增函数,图象在上都是上升的,但是却有着显著的不同.如图1所示,函数的图象是向下凸的,在上任意取两个点,函数的图象总是在线段的下方,此时函数称为下凸函数;函数的图象是向上凸的,在上任意取两个点,函数的图象总是在线段的上方,则函数称为上凸函数.具有这样特征的函数通常称做凸函数.定义1:设函数是定义在区间I上的连续函数,若,都有,则称为区间I上的下凸函数.如图2.下凸函数的形状特征:曲线上任意两点之间的部分位于线段的下方.定义2:设函数是定义在区间I上的连续函数,若,都有,则称为区间I上的上凸函数.如图3.上凸函数的形状特征:曲线上任意两点之间的部分位于线段的上方.上凸(下凸)函数与函数的定义域密切相关的.例如,函数在为上凸函数,在上为下凸函数.函数的奇偶性和周期性分别反映的是函数图象的对称性和循环往复,属于整体性质;而函数的单调性和凸性分别刻画的是函数图象的升降和弯曲方向,属于局部性质.关于函数性质的探索,对我们的启示是:在认识事物和研究问题时,只有从多角度、全方位加以考查,才能使认识和研究更加准确.结合阅读材料回答下面的问题:(1)请尝试列举一个下凸函数:___________;(2)求证:二次函数是上凸函数;(3)已知函数,若对任意,恒有,尝试数形结合探究实数a的取值范围.21.已知扇形AOB的圆心角α为,半径长R为6,求:(1)弧AB的长;(2)扇形的面积

参考答案一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1、B【解析】由余弦函数的定义计算【详解】由题意到原点的距离为,所以故选:B2、C【解析】由题意求得,化简得,再由三角函数的基本关系式,联立方程组,求得,代入即可求解.【详解】由,整理得,所以,又由三角函数的基本关系式,可得由解得,所以.故选C.【点睛】本题主要考查了三角函数的基本关系式的化简求值问题,其中解答中熟记三角函数的基本关系式,准确运算是解答的关键,着重考查了推理与运算能力,属于基础题.3、C【解析】首先由可得是异面直线和所成角,再由为正三角形即可求解.【详解】连接因为为正方体,所以,则是异面直线和所成角.又,可得为等边三角形,则,所以异面直线与所成角为,故选:C【点睛】本题考查异面直线所成的角,利用平行构造三角形或平行四边形是关键,考查了空间想象能力和推理能力,属于中档题.4、C【解析】分析】利用不等式性质逐一判断即可.【详解】选项A中,若,,则,若,,则,故错误;选项B中,取,满足,但,故错误;选项C中,若,则两边平方即得,故正确;选项D中,取,满足,但,故错误.故选:C.【点睛】本题考查了利用不等式性质判断大小,属于基础题.5、C【解析】函数即为对数函数,图象类似的图象,位于轴的右侧,恒过,故选:6、D【解析】设至少需要经过这样的块玻璃板,则,即,两边同时取以10为底的对数,可得,进而求解即可,需注意【详解】设至少需要经过这样的块玻璃板,则,即,所以,即,因为,所以,故选:D【点睛】本题考查利用对数的运算性质求解,考查指数函数的实际应用7、B【解析】由已知集合,判断选项中的集合或元素与集合A的关系即可.【详解】由题设,且,所以B正确,A、C、D错误.故选:B8、C【解析】设乙得到位市民的幸福感指数为,甲得到位市民的幸福感指数为,求出,,由甲的方差可得的值,再求出的值,由方差公式即可求解.【详解】设乙得到位市民的幸福感指数为,则,甲得到位市民的幸福感指数为,可得,,所以这位市民的幸福感指数之和为,平均数为,由方差的定义,乙所得数据的方差:,由于,解得:.因为甲得到位市民的幸福感指数为,,,,,,,,,,所以,所以这位市民的幸福感指数的方差为:,故选:C.9、D【解析】将方程化为标准式即可.【详解】方程化为标准式得,则.故选:D.10、B【解析】先求出集合A,再根据补集定义求得答案.【详解】由题意,,则.故选:B.二、填空题:本大题共6小题,每小题5分,共30分。11、7【解析】利用指数式与对数式的互化,对数运算法则计算作答.【详解】.故答案为:712、【解析】函数是由和复合而成,分别判断两个函数的单调性,根据复合函数的单调性同增异减即可求解.【详解】函数是由和复合而成,因为为单调递增函数,对称轴为,开口向上,所以在上单调递减,在上单调递增,所以在上单调递减,在上单调递增,所以的单调递增区间为,故答案为:.13、【解析】以,为基底,由平面向量基本定理,列方程求解,即可得出结果.【详解】设,则,由于可得,解得,所以故答案为:【点睛】本题考查平面向量基本定理的运用,考查向量的加法运算,考查运算求解能力,属于中档题.14、【解析】根据函数的周期性和值域,在三角函数中确定一个解析式即可【详解】解:函数的周期为,值域为,,则的值域为,,故答案为:15、##【解析】依题意利用诱导公式及二倍角公式计算可得;【详解】解:因为,所以.故答案为:.16、【解析】不等式,可变形为:,所以.即,解得或.故答案为.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17、(1)(2)最大值6万元【解析】(1)根据该农产品每吨售价为10万元,需投入固定成本3万元,每加工吨该农产品,需另投入成本万元求解;(2)根据(1)的结论,分和,利用二次函数和基本不等式求解.【小问1详解】解:当时,.当时,.故加工后该农产品的利润(万元)与加工量(吨)的函数关系式为:【小问2详解】当时,,所以时,取得最大值5万元;当时,因为,当且仅当时,等号成立,所以当时,取得最大值6万元,因为,所以当时,取得最大值6万元.18、(1)3;(2)【解析】⑴将最小值代入函数中求解即可得到的值;⑵根据正弦函数的图象和性质求得函数的最小正周期和单调递增区间解析:(1)由已知得,解得.(2)的最小正周期为.由,解得,.所以的递增区间是.19、(1);(2).【解析】(1)利用偶函数的定义可求得函数在上的解析式,综合可得出函数的解析式;(2)令,则所求不等式可变为,求出的取值范围,可得出关于的不等式,解之即可.【小问1详解】解:因为数是定义在R上的偶函数,当,,则当时,,.因此,对任意的,.【小问2详解】解:由(1)得,所以不等式,即,令,则,于是,解得,所以,得或,从而不等式的解集为20、(1),;(2)证明见解析;(3).【解析】(1)根据下凸函数的定义举例即可;(2)利用上凸函数定义证明即可;(3)根据(2)中结论,结合条件,函数满足上凸函数定义,根据数形结合求得参数取值范围.【小

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论