安徽省三人行名校联2025届数学高一上期末质量跟踪监视模拟试题含解析_第1页
安徽省三人行名校联2025届数学高一上期末质量跟踪监视模拟试题含解析_第2页
安徽省三人行名校联2025届数学高一上期末质量跟踪监视模拟试题含解析_第3页
安徽省三人行名校联2025届数学高一上期末质量跟踪监视模拟试题含解析_第4页
安徽省三人行名校联2025届数学高一上期末质量跟踪监视模拟试题含解析_第5页
已阅读5页,还剩7页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

安徽省三人行名校联2025届数学高一上期末质量跟踪监视模拟试题注意事项:1.答卷前,考生务必将自己的姓名、准考证号填写在答题卡上。2.回答选择题时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其它答案标号。回答非选择题时,将答案写在答题卡上,写在本试卷上无效。3.考试结束后,将本试卷和答题卡一并交回。一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1.圆x2+y2-2x+4y+3=0的圆心到直线x-y=1的距离为()A.2 B.C.1 D.2.“0≤a≤1”是“关于x的不等式x2-2ax+a>0对x∈R恒成立A.充分不必要条件 B.必要不充分条件C.充要条件 D.既不充分也不必要条件3.若,,且,,则函数与函数在同一坐标系中的图像可能是()A. B.C. D.4.已知,,则()A. B.C.或 D.5.已知某产品的总成本C(单位:元)与年产量Q(单位:件)之间的关系为C=310Q2+3000.设该产品年产量为Q时的平均成本为fA.30 B.60C.900 D.1806.函数的零点个数为(

)A.1 B.2C.3 D.47.若点关于直线的对称点是,则直线在轴上的截距是A.1 B.2C.3 D.48.已知幂函数,在上单调递增.设,,,则,,的大小关系是()A. B.C. D.9.设,,,则a,b,c的大小关系为()A. B.C. D.10.在北京召开的国际数学家大会的会标如图所示,它是由个相同的直角三角形与中间的小正方形拼成的一个大正方形,若直角三角形中较小的锐角为,大正方形的面积是,小正方形的面积是,则A. B.C. D.二、填空题:本大题共6小题,每小题5分,共30分。11.已知,若,则的最小值是___________.12.已知圆(x-1)2+(y+2)2=6与直线2x+y-5=0的位置关系是__.(请填写:相切、相交、相离)13.经过两条直线和的交点,且垂直于直线的直线方程为__________14.在中,已知是x的方程的两个实根,则________15.已知,用m,n表示为___________.16.两平行直线与之间的距离______.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17.已知θ是第二象限角,,求:(1);(2)18.求值或化简:(1);(2).19.已知函数(1)求函数的最值及相应的的值;(2)若函数在上单调递增,求的取值范围20.如图,四棱锥中,底面是正方形,平面,,为与的交点,为棱上一点.(1)证明:平面平面;(2)若平面,求三棱锥的体积.21.已知函数(1)求的值(2)求函数的最小正周期及其图像的对称轴方程(3)对于任意,均有成立,求实数的取值范围

参考答案一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1、D【解析】圆心为,点到直线的距离为.故选D.2、B【解析】先根据“关于x的不等式x2-2ax+a>0对x∈R恒成立”得0<a<1【详解】设p:“关于x的不等式x2-2ax+a>0对x∈R恒成立则由p知一元二次函数y=x2-2ax+a的图象开口向上,且所以对于一元二次方程x2-2ax+a=0必有解得0<a<1,由于0,1⊊所以“0≤a≤1”是“关于x的不等式x2-2ax+a>0对x∈R恒成立”故选:B.【点睛】结论点睛:本题考查充分不必要条件的判断,一般可根据如下规则判断:(1)若p是q的必要不充分条件,则q对应集合是p对应集合的真子集;(2)若p是q充分不必要条件,则p对应集合是q对应集合的真子集;(3)若p是q的充分必要条件,则p对应集合与q对应集合相等;(4)若p是q的既不充分又不必要条件,q对的集合与p对应集合互不包含3、B【解析】结合指数函数、对数函数的图象按和分类讨论【详解】对数函数定义域是,A错;C中指数函数图象,则,为减函数,C错;BD中都有,则,因此为增函数,只有B符合故选:B4、A【解析】利用两边平方求出,再根据函数值的符号得到,由可求得结果.【详解】,,,,,,所以,,.故选:A..5、B【解析】利用基本不等式进行最值进行解题.【详解】解:∵某产品的总成本C(单位:元)与年产量Q(单位:件)之间的关系为C=∴f(Q)=当且仅当3Q10=3000Q∴fQ的最小值是60故选:B6、B【解析】函数的定义域为,且,即函数为偶函数,当时,,设,则:,据此可得:,据此有:,即函数是区间上的减函数,由函数的解析式可知:,则函数在区间上有一个零点,结合函数的奇偶性可得函数在R上有2个零点.本题选择B选项.点睛:函数零点的求解与判断方法:(1)直接求零点:令f(x)=0,如果能求出解,则有几个解就有几个零点(2)零点存在性定理:利用定理不仅要函数在区间[a,b]上是连续不断的曲线,且f(a)·f(b)<0,还必须结合函数的图象与性质(如单调性、奇偶性)才能确定函数有多少个零点(3)利用图象交点的个数:将函数变形为两个函数的差,画两个函数的图象,看其交点的横坐标有几个不同的值,就有几个不同的零点7、D【解析】∵点A(1,1)关于直线y=kx+b的对称点是B(﹣3,3),由中点坐标公式得AB的中点坐标为,代入y=kx+b得①直线AB得斜率为,则k=2.代入①得,.∴直线y=kx+b为,解得:y=4.∴直线y=kx+b在y轴上的截距是4.故选D.8、A【解析】根据幂函数的概念以及幂函数的单调性求出,在根据指数函数与对数函数的单调性得到,根据幂函数的单调性得到,再结合偶函数可得答案.【详解】根据幂函数的定义可得,解得或,当时,,此时满足在上单调递增,当时,,此时在上单调递减,不合题意.所以.因为,,,且,所以,因为在上单调递增,所以,又因为为偶函数,所以,所以.故选:A【点睛】关键点点睛:掌握幂函数的概念和性质、指数函数与对数函数的单调性是解题关键.9、A【解析】根据指数函数和对数函数的单调性得出的范围,然后即可得出的大小关系.【详解】由题意知,,即,,即,,又,即,∴故选:A10、C【解析】根据题意即可算出每个直角三角形面积,再根据勾股定理和面积关系即可算出三角形的两条直角边.从而算出【详解】由题意得直角三角形的面积,设三角形的边长分别为,则有,所以,所以,选C.【点睛】本题主要考查了三角形的面积公式以及直角三角形中,正弦、余弦的计算,属于基础题二、填空题:本大题共6小题,每小题5分,共30分。11、16【解析】乘1后借助已知展开,然后由基本不等式可得.【详解】因为,所以当且仅当,,即时,取“=”号,所以的最小值为16.故答案为:1612、相交【解析】求得的圆心到直线的距离,与圆的半径比较大小,即可得出结论.【详解】圆的圆心为、半径为,圆心到直线的距离为,小于半径,所以直线和圆相交,故答案为相交.【点睛】本题主要考查直线和圆的位置关系的判断方法,点到直线的距离公式的应用,属于基础题.解答直线与圆的位置关系的题型,常见思路有两个:一是考虑圆心到直线的距离与半径之间的大小关系;二是直线方程与圆的方程联立,考虑运用判别式来解答.13、【解析】联立方程组求得交点的坐标为,根据题意求得所求直线的斜率为,结合点斜式可得所求直线的方程.【详解】联立方程组,得交点,因为所求直线垂直于直线,故所求直线的斜率,由点斜式得所求直线方程为,即.故答案为:.14、##【解析】根据根与系数关系可得,,再由三角形内角和的性质及和角正切公式求,即可得其大小.【详解】由题设,,,又,且,∴.故答案为:.15、【解析】结合换底公式以及对数的运算法则即可求出结果.详解】,故答案为:.16、2【解析】根据平行线间距离公式可直接求解.【详解】直线与平行由平行线间距离公式可得故答案为:2【点睛】本题考查了平行线间距离公式的简单应用,属于基础题.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17、(1);(2).【解析】(1)由,求得,结合三角函数基本关系式,即可求解;(2)由(1)知,根据三角函数的基本关系式和诱导公式,化简为齐次式,即可求解.【详解】(1)由题意,角是第二象限角,且,可得,可得,所以,所以,因为是第二象限角,可得.(2)由(1)知,又由.18、(1)18;(2).【解析】(1)利用对数的运算性质即可得出;(2)利用指数幂和对数的运算法则即可得出.试题解析:(1)(2)====19、(1)当时,,当时,;(2)【解析】(1)化简得,再求三角函数的最值得解;(2)先求出函数的单调增区间为,可得在单调递增,即得解.【详解】(1)∵,当时,,,当时,,(2)因为,则,解得,令,得,可得在单调递增,若上单调递增,则,所以的取值范围是【点睛】关键点睛:解答第二问的关键求出函数在单调递增,即得到.20、(1)见解析(2)【解析】(1)由,可推出平面,从而可证明平面平面;(2)由平面可推出是中点,因此.【详解】(1)平面,平面,,∵四边形是正方形,,,平面,平面,∴平面平面;(2)平面,平面平面,,是中点,是中点,.【点睛】本题考查面面垂直,考查空间几何体体积的求法,属于中档题.在解决此类几何体体积问题时,可利用中点进行转化.2

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论