版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
湖北省仙桃市汉江高级中学2025届高一数学第一学期期末经典模拟试题注意事项:1.答题前,考生先将自己的姓名、准考证号填写清楚,将条形码准确粘贴在考生信息条形码粘贴区。2.选择题必须使用2B铅笔填涂;非选择题必须使用0.5毫米黑色字迹的签字笔书写,字体工整、笔迹清楚。3.请按照题号顺序在各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试题卷上答题无效。4.保持卡面清洁,不要折叠,不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1.若集合,则()A. B.C. D.2.天文学中为了衡量天体的明暗程度,古希腊天文学家喜帕恰斯(,又名依巴谷)在公元前二世纪首先提出了星等这个概念.星等的数值越小,天体就越亮;星等的数值越大,天体就越暗.到了1850年,由于光度计在天体光度测量中的应用,英国天文学家普森()又提出了衡量天体明暗程度的亮度的概念.天体的明暗程度可以用星等或亮度来描述,两颗星的星等与亮度满足(),其中星等为的星的亮度为(,2).已知“心宿二”的星等是1.00,“天津四”的星等是1.25,“心宿二”的亮度是“天津四”的倍,则的近似值为(当较小时,)()A1.23 B.1.26C.1.51 D.1.573.已知是两相异平面,是两相异直线,则下列错误的是A.若,则 B.若,,则C.若,,则 D.若,,,则4.已知幂函数的图象过点(2,),则的值为()A B.C. D.5.过原点和直线与的交点的直线的方程为()A. B.C. D.6.已知集合,,若,则A. B.C. D.7.已知函数f(x)=|lnx|-1,g(x)=-x2+2x+3,用min{m,n}表示m,n中的最小值.设函数h(x)=min{f(x),g(x)},则函数h(x)的零点个数为()A.1 B.2C.3 D.48.在平面直角坐标系中,以为圆心的圆与轴和轴分别相切于两点,点分别在线段上,若,与圆相切,则的最小值为A. B.C. D.9.要得到函数的图象,只需把函数的图象上所有的点()A.向左平行移动个单位长度 B.向右平行移动个单位长度C.向左平行移动个单位长度 D.向右平行移动个单位长度10.从3名男同学,2名女同学中任选2人参加体能测试,则选到的2名同学中至少有一名男同学的概率是()A. B.C. D.二、填空题:本大题共6小题,每小题5分,共30分。11.已知定义在上的偶函数,当时,若直线与函数的图象恰有八个交点,其横坐标分别为,,,,,,,,则的取值范围是___________.12.已知函数,若对任意的、,,都有成立,则实数的取值范围是______.13.已知直三棱柱的个顶点都在球的球面上,若,,,,则球的直径为________14.已知,则的值为______.15.求值:__________16.设,关于的方程有两实数根,,且,则实数的取值范围是___________.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17.已知函数是定义域为R的奇函数.(1)求t的值,并写出的解析式;(2)判断在R上的单调性,并用定义证明;(3)若函数在上的最小值为,求k的值.18.已知向量=(cosx,-sinx),=(1,),=(1,1),x∈[0,π](1)若与共线,求x的值;(2)若⊥,求x的值;(3)记f(x)=•,当f(x)取得最小值时,求x的值19.函数的部分图象如图所示.(1)求、及图中的值;(2)设,求函数在区间上的最大值和最小值20.计算下列各式的值(1)(2)21.函数的部分图象如图:(1)求解析式;(2)写出函数在上的单调递减区间.
参考答案一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1、C【解析】根据交集定义即可求出.【详解】因为,所以.故选:C.2、B【解析】根据题意列出方程,结合对数式与指数式的互化以及对数运算性质即可求解.【详解】设“心宿二”的星等为,“天津四”的星等为,“心宿二”和“天津四”的亮度分别为,,,,,所以,所以,所以,所以与最接近的是1.26,故选:B.3、B【解析】利用位置关系的判定定理和性质定理逐项判断后可得正确的选项.【详解】对于A,由面面垂直的判定定理可知,经过面的垂线,所以成立;对于B,若,,不一定与平行,不正确;对于C,若,,则正确;对于D,若,,,则正确.故选:B.4、A【解析】令幂函数且过(2,),即有,进而可求的值【详解】令,由图象过(2,)∴,可得故∴故选:A【点睛】本题考查了幂函数,由幂函数的形式及其所过的定点求解析式,进而求出对应函数值,属于简单题5、C【解析】先求出两直线的交点,从而可得所求的直线方程.【详解】由可得,故过原点和交点的直线为即,故选:C.6、A【解析】利用两个集合的交集所包含的元素,求得的值,进而求得.【详解】由于,故,所以,故,故选A.【点睛】本小题主要考查两个集合交集元素的特征,考查两个集合的并集的概念,属于基础题.7、C【解析】画图可知四个零点分别为-1和3,和e,但注意到f(x)的定义域为x>0,故选C.8、D【解析】因为为圆心的圆与轴和轴分别相切于两点,点分别在线段上,若,与圆相切,设切点为,所以,设,则,,故选D.考点:1、圆的几何性质;2、数形结合思想及三角函数求最值【方法点睛】本题主要考查圆的几何性质、数形结合思想及三角函数求最值,属于难题.求最值的常见方法有①配方法:若函数为一元二次函数,常采用配方法求函数求值域,其关键在于正确化成完全平方式,并且一定要先确定其定义域;②三角函数法:将问题转化为三角函数,利用三角函数的有界性求最值;③不等式法:借助于基本不等式求函数的值域,用不等式法求值域时,要注意基本不等式的使用条件“一正、二定、三相等”;④单调性法:首先确定函数的定义域,然后准确地找出其单调区间,最后再根据其单调性求凼数的值域,⑤图像法:画出函数图像,根据图像的最高和最低点求最值,本题主要应用方法②求的最小值的9、C【解析】根据三角函数图象的平移变换求解即可.【详解】由题意,为得到函数的图象,只需把函数的图象上所有的点向左平移个单位长度即可.故选:C10、A【解析】先计算一名男同学都没有的概率,再求至少有一名男同学的概率即可.【详解】两名同学中一名男同学都没有的概率为,则2名同学中至少有一名男同学的概率是.故选:A.二、填空题:本大题共6小题,每小题5分,共30分。11、【解析】先作出函数的大致图象,由函数性质及图象可知八个根是两两关于轴对称的,因此分析可得,,进而将转化为形式,再数形结合,求得结果.【详解】作出函数的图象如图:直线与函数的图象恰有八个交点,其横坐标分别为,,,,,,,,不妨设从左到右分别是,,,,,,,,则,由函数解析式以及图象可知:,即,同理:;由图象为偶函数,图象关于轴对称可知:,所以又因为是方程的两根,所以,而,所以,故,即,故答案为:12、【解析】分析出函数为上的减函数,结合已知条件可得出关于实数的不等式组,由此可解得实数的取值范围.【详解】设,则,由可得,即,所以,函数为上的减函数.由于,由题意可知,函数在上为减函数,则,函数在上为减函数,则,且有,所以,解得.因此,实数的取值范围是.故答案:.【点睛】关键点点睛:在利用分段函数的单调性求参数时,除了分析每支函数的单调性外,还应由间断点处函数值的大小关系得出关于参数的不等式组求解.13、【解析】根据题设条件可以判断球心的位置,进而求解【详解】因为三棱柱的个顶点都在球的球面上,若,,,,所以三棱柱的底面是直角三角形,侧棱与底面垂直,的外心是斜边的中点,上下底面的中心连线垂直底面,其中点是球心,即侧面,经过球球心,球的直径是侧面的对角线的长,因为,,,所以球的半径为:故答案为:14、【解析】用诱导公式计算【详解】,,故答案为:15、【解析】直接利用两角和的正切公式计算可得;【详解】解:故答案为:16、【解析】结合一元二次方程根的分布的知识列不等式组,由此求得的取值范围.【详解】令,依题意关于的方程有两实数根,,且,所以,即,解得.故答案为:三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17、(1)或,;(2)R上单调递增,证明见解析;(3)【解析】(1)是定义域为R的奇函数,利用奇函数的必要条件,求出的值,进而求出,验证是否为奇函数;(2)可判断在上为增函数,用函数的单调性定义加以证明,取两个不等的自变量,对应函数值做差,因式分解,判断函数值差的符号,即可证明结论;(3)由,换元令,,由(2)得,,根据条件转化为在最小值为-2,对二次函数配方,求出对称轴,分类讨论求出最小值,即可求解【详解】解:(1)因为是定义域为R的奇函数,所以,即,解得或,可知,此时满足,所以.(2)在R上单调递增.证明如下:设,则.因为,所以,所以,可得.因为当时,有,所以R单调递增.(3)由(1)可知,令,则,因为是增函数,且,所以.因为在上的最小值为,所以在上的最小值为.因为,所以当时,,解得或(舍去);当时,,不合题意,舍去.综上可知,.【点睛】本题考查函数的奇偶性应用和单调性的证明,考查复合函数的最值,用换元方法,将问题化归为二次函数函数的最值,属于较难题.18、(1);(2);(3).【解析】(1)利用两向量平行有可得到一个关于的方程,利用三角函数恒等变化化简进而求得x的值.(2)利用两向量垂直有可得到一个关于的方程,利用三角函数恒等变化化简进而求得x的值.(3)根据化出一个关于的方程,再利用恒等变化公式将函数转化成,从而找到最小值所取得的x的值.【详解】解:(1)∵向量=(cosx,-sinx),=(1,),=(1,1),x∈[0,π]与共线,∴,∴tanx=-,∵x∈[0,π],∴x=(2)∵⊥,∴cosx-sinx=0,∴tanx=1,∵x∈[0,π],∴x=(3)f(x)=•=cosx-,∵x∈[0,π],∴x-∈[-,],∴x-=时,f(x)取得最小值-2,∴当f(x)取得最小值时,x=【点睛】向量间的位置关系:两向量垂直,则,两向量平行,则.19、(1),,;(2),.【解析】(1)由可得出,结合可求得的值,由结合可求得的值,可得出函数的解析式,再由以及可求得的值;(2)利用三角恒等变换思想化简函数的解析式为,由可求得的取值范围,结合正弦函数的基本性质可求得函数在区间上的最大值和最小值.【详解】(1)由题图得,,,,又,,得,,又,得,.又,且,,,得,综上所述:,,;(2),,,所以当时,;当时,【点睛】本题考查利用图象求正弦型函数解析式中的参数,同时也考查了正弦型函数在区间上最值的计算,
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 酒店改造合同范例范例
- 户外汽灯租赁合同范例
- 铺位 租赁合同范例
- 快递员合作合同范例
- 家具买卖贷款合同范例
- 市政材料供应合同范例
- 含司机租车合同范例
- 鞋面批发采购合同范例
- 药品合同范例格式
- 装修固定总价合同范例
- 2024-2025学年高二上学期期末数学试卷(提高篇)(含答案)
- 2025年安全生产目标实施计划
- 福建百校2025届高三12月联考历史试卷(含答案解析)
- 2024年山西省建筑安全员《B证》考试题库及答案
- 2023年益阳市安化县招聘乡镇卫生院护理人员笔试真题
- 《基于PLC的智能交通灯控制系统设计》10000字(论文)
- 首都经济贸易大学《微积分》2021-2022学年第一学期期末试卷
- 人音版音乐七年级上册《父亲的草原母亲的河》课件
- 2024年度短视频内容创作服务合同3篇
- 介入治疗并发症
- 铸牢中华民族共同体意识-形考任务1-国开(NMG)-参考资料
评论
0/150
提交评论