




版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
新疆巴州焉耆县第三中学2025届高一上数学期末学业质量监测模拟试题注意事项:1.答题前,考生先将自己的姓名、准考证号填写清楚,将条形码准确粘贴在考生信息条形码粘贴区。2.选择题必须使用2B铅笔填涂;非选择题必须使用0.5毫米黑色字迹的签字笔书写,字体工整、笔迹清楚。3.请按照题号顺序在各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试题卷上答题无效。4.保持卡面清洁,不要折叠,不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1.函数的单调递增区间是A. B.C. D.2.为了得到函数图象,只需将函数的图象A.向左平行移动个单位 B.向左平行移动个单位C.向右平行移动个单位 D.向右平行移动个单位3.已知向量,若,则()A.1或4 B.1或C.或4 D.或4.命题关于的不等式的解集为的一个充分不必要条件是()A. B.C. D.5.已知集合,则()A. B.C. D.6.已知圆C与直线及都相切,圆心在直线上,则圆C的方程为()A. B.C. D.7.若,则所在象限是A.第一、三象限 B.第二、三象限C.第一、四象限 D.第二、四象限8.设函数,则的值为()A. B.C. D.189.()A B.C. D.10.在如图的正方体中,M、N分别为棱BC和棱的中点,则异面直线AC和MN所成的角为()A. B.C. D.二、填空题:本大题共6小题,每小题5分,共30分。11.已知函数在区间是单调递增函数,则实数的取值范围是______12.声强级L(单位:dB)由公式给出,其中I为声强(单位:W/m2).声强级为60dB的声强是声强级为30dB的声强的______倍.13.已知,函数,若函数有两个零点,则实数k的取值范围是________14.函数的值域是____________,单调递增区间是____________.15.已知函数对于任意,都有成立,则___________16.已知函数,若,则实数的取值范围为______.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17.设直线与相交于一点.(1)求点的坐标;(2)求经过点,且垂直于直线的直线的方程.18.已知函数当时,判断在上的单调性并用定义证明;若对任意,不等式恒成立,求实数m的取值范围19.一个工厂生产某种产品每年需要固定投资100万元,此外每生产1件该产品还需要增加投资1万元,年产量为()件.当时,年销售总收入为()万元;当时,年销售总收入为万元.记该工厂生产并销售这种产品所得的年利润为万元.(年利润=年销售总收入一年总投资)(1)求(万元)与(件)的函数关系式;(2)当该工厂的年产量为多少件时,所得年利润最大?最大年利润是多少?20.设函数,(1)根据定义证明在区间上单调递增;(2)判断并证明的奇偶性;(3)解关于x的不等式.21.某单位拟建一个扇环面形状的花坛(如图所示),该扇环面是由以点为圆心的两个同心圆弧和延长后通过点的两条直线段围成.按设计要求扇环面的周长为30米,其中大圆弧所在圆的半径为10米.设小圆弧所在圆的半径为米,圆心角为(弧度)(1)求关于的函数关系式;(2)已知在花坛的边缘(实线部分)进行装饰时,直线部分的装饰费用为4元/米,弧线部分的装饰费用为9元/米.设花坛的面积与装饰总费用的比为,求关于的函数关系式,并求出为何值时,取得最大值?
参考答案一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1、D【解析】,选D.2、B【解析】由函数y=Asin(ωx+φ)的图象变换规律,可得结论【详解】∵将函数y=sin(2x)的图象向左平行移动个单位得到sin[2(x)]=,∴要得到函数y=sin2x图象,只需将函数y=sin(2x)的图象向左平行移动个单位故选B【点睛】本题主要考查了函数y=Asin(ωx+φ)的图象变换规律的简单应用,属于基础题3、B【解析】根据向量的坐标表示,以及向量垂直的条件列出方程,即可求解.【详解】由题意,向量,可得,因为,则,解得或.故选:B.4、D【解析】根据三个二次式的性质,求得命题的充要条件,结合选项和充分不必要的判定方法,即可求解.【详解】由题意,命题不等式的解集为,即不等式的解集为,可得,解得,即命题的充要条件为,结合选项,可得,所以是的一个充分不必要条件.故选:D.5、D【解析】由交集的定义求解即可【详解】,由题意,作数轴如图:故,故选:D.6、D【解析】根据圆心在直线上,设圆心坐标为,然后根据圆C与直线及都相切,由求解.【详解】因为圆心在直线上,设圆心坐标为,因为圆C与直线及都相切,所以,解得,∴圆心坐标为,又,∴,∴圆的方程为,故选:D.7、A【解析】先由题中不等式得出在第二象限,然后求出的范围,即可判断其所在象限【详解】因为,,所以,故在第二象限,即,故,当为偶数时,在第一象限,当为奇数时,在第三象限,即所在象限是第一、三象限故选A.【点睛】本题考查了三角函数的象限角,属于基础题8、B【解析】根据分段函数的不同定义域对应的函数解析式,进行代入计算即可.【详解】,故选:B9、A【解析】由根据诱导公式可得答案.【详解】故选:A10、C【解析】根据异面直线所成角的定义,找到与直线平行并且和相交的直线,即可找到异面直线所成的角,解三角形可求得结果.【详解】连接如下图所示,分别是棱和棱的中点,,正方体中可知,是异面直线所成的角,为等边三角形,.故选:C.【点睛】此题是个基础题,考查异面直线所成的角,以及解决异面直线所成的角的方法(平移法)的应用,体现了转化的思想和数形结合的思想.二、填空题:本大题共6小题,每小题5分,共30分。11、【解析】求出二次函数的对称轴,即可得的单增区间,即可求解.【详解】函数的对称轴是,开口向上,若函数在区间是单调递增函数,则,故答案为:12、1000【解析】根据已知公式,应用指对数的关系及运算性质求60dB、30dB对应的声强,即可得结果.【详解】由题设,,可得,,可得,∴声强级为60dB的声强是声强级为30dB的声强的倍.故答案为:1000.13、【解析】由题意函数有两个零点可得,得,令与,作出函数与的图象如图所示:由图可知,函数有且只有两个零点,则实数的取值范围是.故答案为:.【点睛】本题考查分段函数的应用,函数零点的判断等知识,解题时要灵活应用数形结合思想14、①.②.【解析】先求二次函数值域,再根据指数函数单调性求函数值域;根据二次函数单调性与指数函数单调性以及复合函数单调性法则求函数增区间.【详解】因为,所以,即函数的值域是因为单调递减,在(1,+)上单调递减,因此函数的单调递增区间是(1,+).【点睛】本题考查复合函数值域与单调性,考查基本分析求解能力.15、##【解析】由可得时,函数取最小值,由此可求.【详解】,其中,.因为,所以,,解得,,则故答案为:.16、或【解析】令,分析出函数为上的减函数且为奇函数,将所求不等式变形为,可得出关于的不等式,解之即可.【详解】令,对任意的,,故函数的定义域为,因为,则,所以,函数为奇函数,当时,令,由于函数和在上均为减函数,故函数在上也为减函数,因为函数在上为增函数,故函数在上为减函数,所以,函数在上也为减函数,因为函数在上连续,则在上为减函数,由可得,即,所以,,即,解得或.故答案为:或.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17、(1);(2).【解析】(1)将两直线方程联立,求出方程组的公共解,即可得出点的坐标;(2)求出直线的斜率,可得出垂线的斜率,然后利用点斜式方程可得出所求直线的方程,化为一般式即可.【详解】(1)由,解得,因此,点的坐标为;(2)直线斜率为,垂直于直线的直线斜率为,则过点且垂直于直线的直线的方程为,即:.【点睛】本题两直线交点坐标计算,同时也考查了直线的垂线方程的求解,解题时要将两直线的垂直关系转化为斜率关系,考查计算能力,属于基础题.18、(1)见解析;(2)【解析】当时,在上单调递增,利用定义法能进行证明;令,由,得,利用分离参数思想得,恒成立,求出最值即能求出实数的取值范围【详解】当时,在上单调递增证明如下:在上任取,,∵,,∴,∴当时,在上单调递增∵令,由,得,∵不等式恒成立,即在内恒成立,即,∴,恒成立,又∵当时,,可得∴实数的取值范围是【点睛】本题考查函数的单调性及证明,考查实数的取值范围的求法,考查恒成立问题,正确分离参数是关键,也是常用的一种手段.通过分离参数可转化为或恒成立,即或即可,利用单调性求出或即得解,是中档题19、(1)();(2)当年产量为件时,所得年利润最大,最大年利润为万元.【解析】(1)根据已知条件,分当时和当时两种情况,分别求出年利润的表达式,综合可得答案;(2)根据(1)中函数解析式,求出最大值点和最大值即可【详解】(1)由题意得:当时,,当时,,故();(2)当时,,当时,,而当时,,故当年产量为件时,所得年利润最大,最大年利润为万元.【点睛】本题主要考查函数模型及最值的求法,正确建立函数关系是解题的关键,属于常考题.20、(1)证明见解析(2)奇函数,证明见解析(3)【解析】(1)根据函数单调性的定义,准确运算,即可求解;(2)根据函数奇偶性的定义,准确化简,即可求解;(3)根据函数的奇偶性和单调性,把不等式转化为,得到,即可求解【小问1详解】证明:,且,则,因为,,,所以,即,所以在上单调递增【小问2详解】证明:由,即,解得,即的定义域为,对于任意,函数,则,即
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 冬至知识分享
- 情绪管理心理健康教育
- 少儿美术教育机构
- 弹性髓内钉治疗儿童骨折操作技巧
- 口腔保健培训讲课
- 小学生电梯安全知识讲座
- 2025年金属材精整工职业技能考试题库及答案
- 部编版三年级语文下册第一单元标准检测卷(含答案)
- 心理咨询师的家庭婚姻关系与冲突解决课程
- 大学介绍爱因斯坦
- API-620 大型焊接低压储罐设计与建造
- 年产300吨莲子蛋白粉工厂的设计
- 部编统编版五年级下册道德与法治全册教案教学设计与每课知识点总结
- 箱变施工安全文明保证措施
- 浙江省杭州市介绍(课堂PPT)
- 擦窗机安全技术交底
- 001压力管道安装安全质量监督检验报告
- 基于分形理论的雷电先导三维建模与仿真
- 模具钳工试题及答案
- 公司控制权法律意见书三篇
- 全日制专业学位研究生《环境生态学》课程案例教学模式探讨
评论
0/150
提交评论