版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2025届陕西省西安高中高二上数学期末学业质量监测试题注意事项1.考试结束后,请将本试卷和答题卡一并交回.2.答题前,请务必将自己的姓名、准考证号用0.5毫米黑色墨水的签字笔填写在试卷及答题卡的规定位置.3.请认真核对监考员在答题卡上所粘贴的条形码上的姓名、准考证号与本人是否相符.4.作答选择题,必须用2B铅笔将答题卡上对应选项的方框涂满、涂黑;如需改动,请用橡皮擦干净后,再选涂其他答案.作答非选择题,必须用05毫米黑色墨水的签字笔在答题卡上的指定位置作答,在其他位置作答一律无效.5.如需作图,须用2B铅笔绘、写清楚,线条、符号等须加黑、加粗.一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.如图所示,为了测量A,B处岛屿的距离,小张在D处观测,测得A,B分别在D处的北偏西、北偏东方向,再往正东方向行驶10海里至C处,观测B在C处的正北方向,A在C处的北偏西方向,则A,B两处岛屿间的距离为()海里.A. B.C. D.102.2018年,伦敦著名的建筑事务所steynstudio在南非完成了一个惊艳世界的作品一一双曲线建筑的教堂,白色的波浪形屋顶像翅膀一样漂浮,建筑师通过双曲线的设计元素赋予了这座教堂轻盈,极简和雕塑般的气质,如图.若将此大教堂外形弧线的一段近似看成焦点在y轴上的双曲线下支的一部分,且该双曲线的上焦点到下顶点的距离为18,到渐近线距离为12,则此双曲线的离心率为()A. B.C. D.3.已知命题:,,命题:,,则()A.是假命题 B.是真命题C.是真命题 D.是假命题4.已知点,则满足点到直线的距离为,点到直线距离为的直线的条数有()A.1 B.2C.3 D.45.若直线的一个方向向量为,直线的一个方向向量为,则直线与所成的角为()A30° B.45°C.60° D.90°6.“”是“”的()A.充分不必要条件 B.必要不充分条件C充分必要条件 D.既不充分也不必要条件7.有3个兴趣小组,甲、乙两位同学各自参加其中一个小组,每位同学参加各个小组可能性相同,则这两位同学参加同一个兴趣小组的概率为A. B.C. D.8.已知点P在抛物线上,点Q在圆上,则的最小值为()A. B.C. D.9.已知,则()A. B.C. D.10.直线x+y﹣1=0被圆(x+1)2+y2=3截得的弦长等于()A. B.2C.2 D.411.已知条件:,条件:表示一个椭圆,则是的()A.充分不必要条件 B.必要不充分条件C.充要条件 D.既不充分也不必要条件12.已知抛物线,则抛物线的焦点到其准线的距离为()A. B.C. D.二、填空题:本题共4小题,每小题5分,共20分。13.已知为椭圆上的一点,,分别为圆和圆上的点,则的最小值为______14.数列的前n项和满足:,则________15.设数列的前n项和为,若,且是等差数列.则的值为__________16.若直线是曲线的切线,也是曲线的切线,则__________三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(12分)已知椭圆的离心率为,椭圆过点.(1)求椭圆C的方程;(2)过点的直线交椭圆于M、N两点,已知直线MA,NA分别交直线于点P,Q,求的值.18.(12分)三棱柱中,侧面为菱形,,,,(1)求证:面面;(2)在线段上是否存在一点M,使得二面角为,若存在,求出的值,若不存在,请说明理由19.(12分)已知极坐标系的极点在直角坐标系的原点处,极轴与轴的正半轴重合,直线的极坐标方程为,曲线的参数方程是(是参数)(1)求直线的直角坐标方程及曲线的普通方程;(2)求曲线上的点到直线的距离的最大值20.(12分)某工厂修建一个长方体无盖蓄水池,其容积为4800立方米,深度为3米.池底每平方米的造价为150元,池壁每平方米的造价为120元.设池底长方形长为x米(1)求底面积,并用含x的表达式表示池壁面积;(2)怎样设计水池能使总造价最低?最低造价是多少?21.(12分)已知等差数列中,首项,公差,且数列的前项和为(1)求和;(2)设,求数列的前项和22.(10分)已知椭圆:的一个顶点为,离心率为,直线与椭圆交于不同的两点M,N(1)求椭圆的标准方程;(2)当的面积为时,求的值
参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、C【解析】分别在和中,求得的长度,再在中,利用余弦定理,即可求解.【详解】如图所示,可得,所以,在中,可得,在直角中,因为,所以,在中,由余弦定理可得,所以.故选:C.2、A【解析】设出双曲线的方程,根据已知条件列出方程组即可求解.【详解】设双曲线的方程为,由双曲线的上焦点到下顶点的距离为18,即,上焦点的坐标为,其中一条渐近线为,上焦点到渐近线的距离为,则,解得,,即,故选:.3、C【解析】先分别判断命题、的真假,再利用逻辑联结词“或”与“且”判断命题的真假.【详解】由题意,,所以,成立,即命题为真命题,,所以不存在,使得,即命题为假命题,所以是假命题,为真命题,所以是真命题,是假命题,是假命题,是真命题.故选:C4、D【解析】以为圆心,为半径,为圆心,为半径分别画圆,将所求转化为求圆与圆的公切线条数,判断两圆的位置关系,从而得公切线条数.【详解】以为圆心,为半径,为圆心,为半径分别画圆,如图所示,由题意,满足点到直线的距离为,点到直线距离为的直线的条数即为圆与圆的公切线条数,因为,所以两圆外离,所以两圆的公切线有4条,即满足条件的直线有4条.故选:D【点睛】解答本题的关键是将满足点到直线的距离为,点到直线距离为的直线的条数转化为圆与圆的公切线条数,从而根据圆与圆的位置关系判断出公切线条数.5、C【解析】直接由公式,计算两直线的方向向量的夹角,进而得出直线与所成角的大小【详解】因为,,所以,所以,所以直线与所成角的大小为故选:C6、A【解析】根据充分条件和必要条件的定义直接判断即可.【详解】若,则,即或,推不出;反过来,若,可推出.故“”是“”的充分不必要条件故选:A.7、A【解析】每个同学参加的情形都有3种,故两个同学参加一组的情形有9种,而参加同一组的情形只有3种,所求的概率为p=选A8、C【解析】先计算抛物线上的点P到圆心距离的最小值,再减去半径即可.【详解】设,由圆心,得,∴时,,∴故选:C.9、C【解析】取中间值,化成同底利用单调性比较可得.【详解】,,,故,故选:C10、B【解析】如图,圆(x+1)2+y2=3的圆心为M(−1,0),圆半径|AM|=,圆心M(−1,0)到直线x+y−1=0的距离:|,∴直线x+y−1=0被圆(x+1)2+y2=3截得的弦长:.故选B.点睛:本题考查圆的标准方程以及直线和圆的位置关系.判断直线与圆的位置关系一般有两种方法:1.代数法:将直线方程与圆方程联立方程组,再将二元方程组转化为一元二次方程,该方程解的情况即对应直线与圆的位置关系.这种方法具有一般性,适合于判断直线与圆锥曲线的位置关系,但是计算量较大.2.几何法:圆心到直线的距离与圆半径比较大小,即可判断直线与圆的位置关系.这种方法的特点是计算量较小.当直线与圆相交时,可利用垂径定理得出圆心到直线的距离,弦长和半径的勾股关系.11、B【解析】根据曲线方程,结合充分、必要性的定义判断题设条件间的关系.【详解】由,若,则表示一个圆,充分性不成立;而表示一个椭圆,则成立,必要性成立.所以是的必要不充分条件.故选:B12、D【解析】将抛物线方程化为标准方程,由此确定的值即可.【详解】由可得抛物线标准方程为:,,抛物线的焦点到其准线的距离为.故选:D.二、填空题:本题共4小题,每小题5分,共20分。13、8【解析】根据椭圆的定义、点到圆上距离的最小值,即可得到答案;【详解】设为椭圆的左右焦点,则,等号成立,当共线,共线,的最小值为,故答案为:14、【解析】利用“当时,;当时,"即可得出.【详解】当时,当时,,不适合上式,数列的通项公式.故答案为:.15、52【解析】根据给定条件求出,再求出数列的通项即可计算作答.【详解】依题意,因是等差数列,则其公差,于是得,,当时,,而满足上式,因此,,所以.故答案为:5216、【解析】根据导数的几何意义,结合待定系数法进行求解即可.【详解】设曲线的切点为:,由,所以过该切点的切线斜率为:,于切线方程为:,因此有:,设曲线的切点为:,由,所以过该切点的切线斜率为:,于是切线方程为:,因此有:,因为,,即,因此,故答案为:【点睛】关键点睛:根据导数的几何意义进行求解是解题的关键.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17、(1)(2)1【解析】(1)由题意得到关于a,b的方程组,求解方程组即可确定椭圆方程;(2)首先联立直线与椭圆的方程,然后由直线MA,NA的方程确定点P,Q的纵坐标,将线段长度的比值转化为纵坐标比值的问题,进一步结合韦达定理可证得,从而可得两线段长度的比值.【小问1详解】由题意,点椭圆上,有,解得故椭圆C的方程为.【小问2详解】当直线l的斜率不存在时,显然不符;当直线l的斜率存在时,设直线l为:联立方程得:由,设,有又由直线AM:,令x=-4得,将代入得:,同理得:.很明显,且,注意到,,而,故所以.【点睛】本题考查求椭圆的方程,解题关键是利用离心率与椭圆上的点,找到关于a,b,c的等量关系求解a与b.本题中直线方程代入椭圆方程整理后应用韦达定理求出,.表示出,,然后转化为相应的比值关系.考查了学生的运算求解能力,逻辑推理能力.属于中档题18、(1)证明见解析;(2)【解析】(1)取BC的中点O,连结AO、,在三角形中分别证明和,再利用勾股定理证明,结合线面垂直的判定定理可证明平面,再由面面垂直的判定定理即可证明结果.(2)建立空间直角坐标系,假设点M存在,设,求出M点坐标,然后求出平面的法向量,利用空间向量的方法根据二面角的平面角为可求出的值.【详解】(1)取BC的中点O,连结AO,,,为等腰直角三角形,所以,;侧面为菱形,,所以三角形为为等边三角形,所以,又,所以,又,满足,所以;因为,所以平面,因为平面中,所以平面平面.(2)由(1)问知:两两垂直,以O为坐标原点,为轴,为轴,为轴建立空间之间坐标系.则,,,,若存在点M,则点M在上,不妨设,则有,则,有,,设平面的法向量为,则解得:平面的法向量为则解得:或(舍)故存在点M,.【点睛】本题考查立体几何探索是否存在的问题,属于中档题.方法点睛:(1)判断是否存在的问题,一般先假设存在;(2)设出点坐标,作为已知条件,代入计算;(3)根据结果,判断是否存在.19、(1)直线的直角坐标方程是,曲线的普通方程是(2)【解析】(1)利用极坐标与直角坐标互化的公式进行求解,消去参数求出普通方程;(2)设曲线上任一点以,利用点到直线距离公式和辅助角公式进行求解.【小问1详解】因为,所以,即,将,代入,得直线的直角坐标方程是由得曲线的普通方程是【小问2详解】设曲线上任一点以,则点到直线的距离当时,,故曲线上的点到直线的距离的最大值为20、(1)1600,(平方米);(2)池底设计为边长40米的正方形时总造价最低,最低造价为268800元.【解析】(1)根据题意,由于修建一个长方体无盖蓄水池,其容积为4800立方米,深度为3米可得底面积为1600,池壁面积s=.(2)同时池底每平方米的造价为150元,池壁每平方米的造价为120元设池底长方形长为x米,则可知总造价s=,x=40时,则.故可知当x=40时,则有可使得总造价最低,最低造价是268800元.考点:不等式求解最值点评:主要是考查了不等式求解最值的运用,属于基础题.21、(1),;(2).【解析】(1)根据题意,结合等差数列的通项公式与求和公式,即可求解;(2)根据题意,求出,结合等差数列求和公
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 资产管理员练习测试题附答案
- 2024安全管理技术竞赛(多选、判断)复习测试卷附答案(一)
- 语文统编版(2024)一年级上册ɡ k h 课件
- 第1章 程控数字交换技术概述课件
- 四川省广安市邻水县2024届九年级下学期中考模拟预测数学试卷(含答案)
- 校园文明礼仪课件
- 5年中考3年模拟试卷初中道德与法治九年级下册01中考道德与法治真题分项精练(一)
- 人教版小学六年级下册音乐教案全册
- 2024-2025学年专题22.1 能源-九年级物理人教版含答案
- (统考版)2023版高考化学一轮复习课时作业23化学平衡常数
- 电磁兼容试验和测量技术射频电磁场辐射抗扰度试验
- 实验室危险废物回收处理工作流程
- YY/T 1496-2016红光治疗设备
- WS 213-2001丙型病毒性肝炎诊断标准及处理原则
- 畜牧兽医法规精品课件
- GB/T 19249-2003反渗透水处理设备
- GB/T 14514.2-1993气动快换接头试验方法
- 建筑施工图设计规范及深度规定
- SMA讲课教学课件
- 《茶与健康知识》课件
- 基本建设程序和工厂设计的组成课件
评论
0/150
提交评论