青海省海南州2025届高二上数学期末统考试题含解析_第1页
青海省海南州2025届高二上数学期末统考试题含解析_第2页
青海省海南州2025届高二上数学期末统考试题含解析_第3页
青海省海南州2025届高二上数学期末统考试题含解析_第4页
青海省海南州2025届高二上数学期末统考试题含解析_第5页
已阅读5页,还剩9页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

青海省海南州2025届高二上数学期末统考试题注意事项:1.答卷前,考生务必将自己的姓名、准考证号、考场号和座位号填写在试题卷和答题卡上。用2B铅笔将试卷类型(B)填涂在答题卡相应位置上。将条形码粘贴在答题卡右上角"条形码粘贴处"。2.作答选择题时,选出每小题答案后,用2B铅笔把答题卡上对应题目选项的答案信息点涂黑;如需改动,用橡皮擦干净后,再选涂其他答案。答案不能答在试题卷上。3.非选择题必须用黑色字迹的钢笔或签字笔作答,答案必须写在答题卡各题目指定区域内相应位置上;如需改动,先划掉原来的答案,然后再写上新答案;不准使用铅笔和涂改液。不按以上要求作答无效。4.考生必须保证答题卡的整洁。考试结束后,请将本试卷和答题卡一并交回。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.已知抛物线,则抛物线的焦点到其准线的距离为()A. B.C. D.2.已知集合A=()A. B.C.或 D.3.双曲线的渐近线方程和离心率分别是A. B.C. D.4.已知,那么函数在x=π处的瞬时变化率为()A. B.0C. D.5.已知椭圆上一点到左焦点的距离为,是的中点,则()A.1 B.2C.3 D.46.已知圆与圆没有公共点,则实数a的取值范围为()A. B.C. D.7.已知椭圆:的左、右焦点分别为、,为坐标原点,为椭圆上一点.与轴交于一点,,则椭圆C的离心率为()A. B.C. D.8.设异面直线、的方向向量分别为,,则异面直线与所成角的大小为()A. B.C. D.9.某同学为了调查支付宝中的75名好友的蚂蚁森林种树情况,对75名好友进行编号,分别为1,2,…,75,采用系统抽样的方法抽取一个容量为5的样本,已知11号,26号,56号,71号好友在样本中,则样本中还有一名好友的编号是()A.40 B.41C.42 D.3910.为迎接2022年冬奥会,某校在体育冰球课上加强冰球射门训练,现从甲、乙两队中各选出5名球员,并分别将他们依次编号为1,2,3,4,5进行射门训练,他们的进球次数如折线图所示,则在这次训练中以下说法正确的是()A.甲队球员进球的中位数比乙队大 B.乙队球员进球的中位数比甲队大C.乙队球员进球水平比甲队稳定 D.甲队球员进球数的极差比乙队小11.设函数的图象为C,则下面结论中正确的是()A.函数的最小正周期是B.图象C关于点对称C.函数在区间上是增函数D.图象C可由函数的图象向右平移个单位得到12.直线的斜率为()A.135° B.45°C.1 D.-1二、填空题:本题共4小题,每小题5分,共20分。13.若圆C的方程为,点P是圆C上的动点,点O为坐标原点,则的最大值为______14.设函数,,对任意的,都有成立,则实数的取值范围是______15.在等比数列中,已知,则__________16.已知平行四边形内接于椭圆,且的斜率之积为,则椭圆的离心率为________三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(12分)同时掷两颗质地均匀的骰子(六个面分别标有数字1,2,3,4,5,6的正方体)(1)求两颗骰子向上的点数相等的概率;(2)求两颗骰子向上的点数不相等,且一个点数是另一个点数的整数倍的概率18.(12分)设等比数列的前项和为,且()(1)求数列的通项公式;(2)在与之间插入个实数,使这个数依次组成公差为的等差数列,设数列的前项和为,求证:19.(12分)已知是各项均为正数的等比数列,且,.(1)求数列的通项公式;(2)数列通项公式为,求数列的前n项和.20.(12分)已知圆C:的半径为1(1)求实数a的值;(2)判断直线l:与圆C是否相交?若不相交,请说明理由;若相交,请求出弦长21.(12分)在等比数列{}中,(1),,求;(2),,求的值.22.(10分)已知椭圆的右焦点为,短轴长为4,设,的左右有两个焦点求椭圆C的方程;若P是该椭圆上的一个动点,求的取值范围;是否存在过点的直线l与椭圆交于不同的两点C,D,使得?若存在,求出直线l的方程;若不存在,请说明两点

参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、D【解析】将抛物线方程化为标准方程,由此确定的值即可.【详解】由可得抛物线标准方程为:,,抛物线的焦点到其准线的距离为.故选:D.2、A【解析】先求出集合,再根据集合的交集运算,即可求出结果.【详解】因为集合,所以.故选:A.3、A【解析】先根据双曲线的标准方程,求得其特征参数的值,再利用双曲线渐近线方程公式和离心率定义分别计算即可.【详解】双曲线的,双曲线的渐近线方程为,离心率为,故选A.【点睛】本题主要考查双曲线的渐近线及离心率,属于简单题.离心率的求解在圆锥曲线的考查中是一个重点也是难点,一般求离心率有以下几种情况:①直接求出,从而求出;②构造的齐次式,求出;③采用离心率的定义以及圆锥曲线的定义来求解;④根据圆锥曲线的统一定义求解4、A【解析】利用导数运算法则求出,根据导数的定义即可得到结论【详解】由题设,,所以,函数在x=π处瞬时变化率为,故选:A5、A【解析】由椭圆的定义得,进而根据中位线定理得.【详解】解:由椭圆方程得,即,因为由椭圆的定义得,,所以,因为是的中点,是的中点,所以.故选:A6、B【解析】求出圆、的圆心和半径,再由两圆没有公共点列不等式求解作答.【详解】圆的圆心,半径,圆的圆心,半径,,因圆、没有公共点,则有或,即或,又,解得或,所以实数a的取值范围为.故选:B7、C【解析】由椭圆的性质可先求得,故可得,再由椭圆的定义得a,c的关系,故可得答案【详解】,,又,,则,,则,,由椭圆的定义得,,,故选:C8、C【解析】利用空间向量夹角的公式直接求解.【详解】,,,.由异面直线所成角的范围为,故异面直线与所成的角为.故选:C9、B【解析】根据系统抽样等距性即可确定结果.【详解】根据系统抽样等距性得:11号,26号,56号,71号以及还有一名好友的编号应该按大小排列后成等差数列,样本中还有一名好友的编号为26号与56号的等差中项,即41号,故选:B【点睛】本题考查系统抽样,考查基本分析求解能力,属基础题.10、C【解析】根据折线图,求出甲乙中位数、平均数及方差、极差,即可判断各选项的正误.【详解】由题图,甲队数据从小到大排序为,乙队数据从小到大排序为,所以甲乙两队的平均数都为5,甲、乙进球中位数相同都为5,A、B错误;甲队方差为,乙队方差为,即,故乙队球员进球水平比甲队稳定,C正确.甲队极差为6,乙队极差为4,故甲队极差比乙队大,D错误.故选:C11、B【解析】化简函数解析式,求解最小正周期,判断选项A,利用整体法求解函数的对称中心和单调递增区间,判断选项BC,再由图象变换法则判断选项D.【详解】,所以函数的最小正周期为,A错;令,得,所以函数图象关于点对称,B正确;由,得,所以函数在上为增函数,在上为减函数,C错;函数的图象向右平移个单位得,D错.故选:B12、D【解析】由斜截式直接看出直线斜率.【详解】由题意得:直线斜率为-1,故选:D二、填空题:本题共4小题,每小题5分,共20分。13、##【解析】根据点与圆的位置关系求得正确答案.【详解】圆的方程可化为,所以圆心为,半径.由于,所以原点在圆外,所以最大值为.故答案为:14、【解析】首先求得函数在区间上的最大值,然后分离参数,利用导函数求最值即可确定实数的取值范围.【详解】∵在上恒成立,∴当时,取最大值1,∵对任意的,都有成立,∴在上恒成立,即在上恒成立,令,则,,∵在上恒成立,∴在上为减函数,∵当时,,故当时,取最大值1,故,故答案为【点睛】本题考查的知识点是函数恒成立问题,利用导数研究函数的单调性,利用导数研究函数的最值,难度中档15、32【解析】根据已知求出公比即可求出答案.【详解】设等比数列的公比为,则,则,所以.故答案为:32.16、##0.5【解析】根据对称性设,,,根据得到,再求离心率即可.【详解】由对称性,,关于原点对称,设,,,,故.故答案为:三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17、(1);(2).【解析】(1)求出同时掷两颗骰子的基本事件数、及骰子向上的点数相等的基本事件数,应用古典概型的概率求法,求概率即可.(2)列举出两颗骰子向上的点数不相等,且一个点数是另一个点数的倍数的基本事件,应用古典概型的概率求法,求概率即可.【小问1详解】同时掷两颗骰子包括的基本事件共种,掷两颗骰子向上的点数相等包括的基本事件为6种,故所求的概率为;【小问2详解】两颗骰子向上的点数不相等,且一个点数是另一个点数的倍数时,用坐标记为,,,,,,,,,,,,,,,,共包括16个基本事件,故两颗骰子向上的点数不相等,且一个点数是另一个点数的倍数有的概率为.18、(1)(2)见解析【解析】(1)由两式相减得,所以()因为等比,且,所以,所以故(2)由题设得,所以,所以,则,所以19、(1);(2).【解析】(1)设的公比为,利用基本量运算求出公比,可得数列的通项公式;(2)利用错位相减法计算出数列的前n项和【详解】(1)设的公比为,由题意知:,.又,解得,,所以.(2).令,则,因此,又,两式相减得所以.【点睛】方法点睛:本题考查等比数列的通项公式,考查数列的求和,数列求和的方法总结如下:

公式法,利用等差数列和等比数列的求和公式进行计算即可;

裂项相消法,通过把数列的通项公式拆成两项之差,在求和时中间的一些项可以相互抵消,从而求出数列的和;

错位相减法,当数列的通项公式由一个等差数列与一个等比数列的乘积构成时使用此方法;

倒序相加法,如果一个数列满足首末两项等距离的两项之和相等,可以使用此方法求和20、(1);(2)直线l与圆C相交,.【解析】(1)利用配方法进行求解即可;(2)根据点到直线距离公式,结合圆的弦长公式进行求解即可.【小问1详解】将化为标准方程得:因为圆C的半径为1,所以,得【小问2详解】由(1)知圆C的圆心为,半径为1设圆心C到直线l的距离为d,则,所以直线l与圆C相交,设其交点为A,B,则,即21、(1)(2)【解析】(1)直接利用等比数列的求和公式求解即可,(2)由已知条件结合等比数的性质可得,从而可求得答案,或直接利用等比数列的求和公式化简求解【小问1详解】.【小问2详解】方法1:.∴.方法2:,整理得:又22、(1)(2)(3)满足条件的直线不存在,详见解析【解析】根据条件直接求出,进而求出椭圆标准方程;设,表示出,求出其范围;设CD的中点为;

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论