版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
学校________________班级____________姓名____________考场____________准考证号学校________________班级____________姓名____________考场____________准考证号…………密…………封…………线…………内…………不…………要…………答…………题…………第1页,共5页山东省滨州市滨城区2024-2025学年九年级数学第一学期开学调研模拟试题题号一二三四五总分得分A卷(100分)一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)1、(4分)如图所示,在正方形ABCD中,点E,F分别在CD,BC上,且BF=CE,连接BE,AF相交于点G,则下列结论不正确的是()A.BE=AF B.∠DAF=∠BECC.∠AFB+∠BEC=90° D.AG⊥BE2、(4分)矩形ABCD中,O为AC的中点,过点O的直线分别与AB,CD交于点E,F,连接BF交AC于点M连接DE,BO.若∠COB=60°,FO=FC,则下列结论:①△AOE≌△COF;②△EOB≌△CMB;③FB⊥OC,OM=CM;④四边形EBFD是菱形;⑤MB:OE=3:2其中正确结论的个数是()A.5 B.4 C.3 D.23、(4分)正方形具有而菱形不具有的性质是()A.对角线互相平分 B.对角线相等C.对角线平分一组对角 D.对角线互相垂直4、(4分)八边形的内角和为()A.180° B.360° C.1080° D.1440°5、(4分)已知,则(b+d≠0)的值等于()A. B. C. D.6、(4分)已知a=2-2,b=A.a>b>c B.b>a>c C.c>a>b D.b>c>a7、(4分)如图,反比例函数y=(k≠0,x>0)图象经过正方形ABCD的顶点A,边BC在x轴的正半轴上,连接OA,若BC=2OB,AD=4,则k的值为()A.2 B.4 C.6 D.88、(4分)为了解某学校七至九年级学生每天的体育锻炼时间,下列抽样调查的样本代表性较好的是()A.选择七年级一个班进行调查B.选择八年级全体学生进行调查C.选择全校七至九年级学号是5的整数倍的学生进行调查D.对九年级每个班按5%的比例用抽签的方法确定调查者二、填空题(本大题共5个小题,每小题4分,共20分)9、(4分)已知函数的图像经过点A(1,m)和点B(2,n),则m___n(填“>”“<”或“=”).10、(4分)如果n边形的每一个内角都相等,并且是它外角的3倍,那么n=______11、(4分)一个正多边形的每个内角等于108°,则它的边数是_________.12、(4分)如图,在菱形中,,的垂直平分线交对角线于点,垂足为点,连接,,则______.13、(4分)在平面直角坐标系中,一个智能机器人接到如下指令,从原点O出发,按向右,向上,向右,向下的方向依次不断移动,每次移动1m,其行走路线如图所示,第1次移动到,第2次移动到……,第n次移动到,机器人移动第2018次即停止,则的面积是______.三、解答题(本大题共5个小题,共48分)14、(12分)关于x的一元二次方程有两个不相等的实数根.(1)求m的取值范围;(2)写出一个满足条件的m的值,并求此时方程的根.15、(8分)如图,在平面直角坐标系中,已知△ABC的三个顶点的坐标分别为A(﹣4,3)、B(﹣3,1)、C(﹣1,3).(1)请按下列要求画图:①将△ABC先向右平移4个单位长度、再向上平移1个单位长度,得到△A1B1C1,画出△A1B1C1;②△A1B1C1与△ABC关于原点O成中心对称,画出△A1B1C1.(1)在(1)中所得的△A1B1C1和△A1B1C1关于点M成中心对称,请直接写出对称中心M点的坐标.16、(8分)先化简,再求值:(1﹣),其中m=1.17、(10分)为了方便居民低碳出行,我市公共自行车租赁系统(一期)试运行.图①是公共自行车的实物图,图②是公共自行车的车架示意图,点、、、在伺一条直线上,测量得到座杆,,,且.求点到的距离.(结果精确到.参考数据:,,)18、(10分)(问题原型)在图①的矩形中,点、、、分别在、、、上,若,则称四边形为矩形的反射四边形;(操作与探索)在图②,图③的矩形中,,,点、分别在、边的格点上,试利用正方形网格分别在图②、图③上作矩形的反射四边形;(发现与应用)由前面的操作可以发现,一个矩形有不同的反射四边形,且这些反射四边形的周长都相等.若在图①的矩形中,,,则其反射四边形的周长为______.B卷(50分)一、填空题(本大题共5个小题,每小题4分,共20分)19、(4分)已知:一组邻边分别为和的平行四边形,和的平分线分别交所在直线于点,,则线段的长为________.20、(4分)如图,AB∥CD,E、F分别是AC、BD的中点,若AB=5,CD=3,则EF的长为______________.21、(4分)如图,是等腰直角三角形内一点,是斜边,将绕点按逆时针方向旋转到的位置.如果,那么的长是____.22、(4分)一元二次方程的解为______.23、(4分)设、是方程的两个实数根,则的值为_____.二、解答题(本大题共3个小题,共30分)24、(8分)我市开展“美丽自贡,创卫同行”活动,某校倡议学生利用双休日在“花海”参加义务劳动,为了解同学们劳动情况,学校随机调查了部分同学的劳动时间,并用得到的数据绘制了不完整的统计图,根据图中信息回答下列问题:(1)将条形统计图补充完整;(2)扇形图中的“1.5小时”部分圆心角是多少度?(3)求抽查的学生劳动时间的众数、中位数.25、(10分)小李从甲地前往乙地,到达乙地休息了半个小时后,又按原路返回甲地,他与甲地的距离(千米)和所用的时间(小时)之间的函数关系如图所示。(1)小李从乙地返回甲地用了多少小时?(2)求小李出发小时后距离甲地多远?26、(12分)如图,在平行四边形OABC中,已知点A、C两点的坐标为A(,),C(2,0).(1)求点B的坐标.(2)将平行四边形OABC向左平移个单位长度,求所得四边形A′B′C′O′四个顶点的坐标.(3)求平行四边形OABC的面积.
参考答案与详细解析一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)1、C【解析】∵ABCD是正方形,∴∠ABF=∠C=90°,AB=BC.∵BF=CE,∴△ABF≌△BCE.∴AF=BE(第一个正确).∠BAF=∠CBE,∠BFA=∠BEC(第三个错误).∵∠BAF+∠DAF=90°,∠BAF+∠BFA=90°,∴∠DAF=∠BEC(第二个正确).∵∠BAF=∠CBE,∠BAF+∠AFB=90°.∴∠CBE+∠AFB=90°.∴AG⊥BE(第四个正确).所以不正确的是C,故选C.2、B【解析】
作辅助线找全等三角形和特殊的直角三角形解题,见详解.【详解】解:连接BD
∵四边形ABCD是矩形∴AC=BD,AC、BD互相平分∵O为AC中点∴BD也过O点∴OB=OC∵∠COB=60°,OB=OC∴△OBC是等边三角形∴OB=BC=OC,∠OBC=60°∵FO=FC,BF=BF∴△OBF≌△CBF(SSS)∴△OBF与△CBF关于直线BF对称∴FB⊥OC,OM=CM.故③正确∵∠OBC=60°∴∠ABO=30°∵△OBF≌△CBF∴∠OBM=∠CBM=30°∴∠ABO=∠OBF∵AB∥CD∴∠OCF=∠OAE∵OA=OC可得△AOE≌△COF,故①正确∴OE=OF则四边形EBFD是平行四边形,又可知OB⊥EF∴四边形EBFD是菱形.故④正确∴△EOB≌△FOB≌△FCB.则②△EOB≌△CMB错误∵∠OMB=∠BOF=90°,∠OBF=30°,设MB=a,则OM=a,OB=2a,OF=OM,∵OE=OF∴MB:OE=3:2.则⑤正确综上一共有4个正确的,故选B.本题考查了四边形的综合应用,特殊的直角三角形,三角形的全等,菱形的判定,综合性强,难度大,认真审题,证明全等找到边长之间的关系是解题关键.3、B【解析】
根据正方形和菱形的性质逐项分析可得解.【详解】根据正方形对角线的性质:平分、相等、垂直;菱形对角线的性质:平分、垂直,故选B.考点:1.菱形的性质;2.正方形的性质.4、C【解析】试题分析:根据n边形的内角和公式(n-2)×180º可得八边形的内角和为(8-2)×180º=1080º,故答案选C.考点:n边形的内角和公式.5、B【解析】
由已知可知:5b=7a,5d=7c,得到(b+d)的值.【详解】由,得5b=7a,5d=7c,所以故选B.本题考查分式的基本性质,学生们熟练掌握即可.6、B【解析】
先根据幂的运算法则进行计算,再比较实数的大小即可.【详解】a=2b=π-2c=-11>1故选:B.此题主要考查幂的运算,准确进行计算是解题的关键.7、D【解析】
根据正方形的性质,和BC=2OB,AD=4,可求出OB、AB,进而确定点A的坐标,代入求出k即可.【详解】解:∵正方形ABCD,AD=4,∴AB=AD=4=BC,∵BC=2OB,∴OB=2,∴A(2,4),代入y=得:k=8,故选:D.本题考查了反比例函数与几何问题中k的求解,解题的关键是根据几何图形的性质得出反比例函数图象上点的坐标.8、C【解析】
直接利用抽样调查必须具有代表性,进而分析得出答案.【详解】抽样调查的样本代表性较好的是:选择全校七至九年级学号是5的整数倍的学生进行调查,故选C.此题主要考查了抽样调查的可靠性,正确把握抽样调查的意义是解题关键.二、填空题(本大题共5个小题,每小题4分,共20分)9、>【解析】分析:根据一次函数的性质得到y随x的增大而减小,根据1<2即可得出答案.详解:∵函数中,k=-3<0,∴y随x的增大而减小,∵函数y=-3x+2的图象经过点A(1,m)和点B(2,n),1<2,∴m>n,故答案为:>.点睛:本题主要考查对一次函数图象上点的坐标特征,一次函数的性质等知识点的理解和掌握,能熟练地运用一次函数的性质进行推理是本题的关键.10、8【解析】
根据多边形内角和公式可知n边形的内角和为(n-2)·180º,n边形的外角和为360°,再根据n边形的每个内角都等于其外角的3倍列出关于n的方程,求出n的值即可.【详解】解:∵n边形的内角和为(n-2)·180º,外角和为360°,n边形的每个内角都等于其外角的3倍,∴(n-2)·180º=360°×3,解得:n=8.故答案为:8.本题考查的是多边形的内角与外角的关系的应用,明确多边形一个内角与外角互补和外角和的特征是解题的关键.11、1【解析】
由题意可得这个正多边形的每个外角等于72°,然后根据多边形的外角和是360°解答即可.【详解】解:∵一个正多边形的每个内角等于108°,∴这个正多边形的每个外角等于72°,∴这个正多边形的边数为.故答案为:1.本题考查了正多边形的基本知识,属于基础题型,熟知正多边形的每个外角相等、多边形的外角和是360°是解此题的关键.12、.【解析】
首先根据题意可得,即可得,根据,可得,再利用为的垂直平分线,进而计算的度数.【详解】由题可知,则,根据,可知,,又为的垂直平分线,.即,则,即.本题只要考查菱形的性质,难度系数较低,应当熟练掌握.13、504m2【解析】
由OA=2n知OA=+1=1009,据此得出AA=1009-1=1008,据此利用三角形的面积公式计算可得.【详解】由题意知OA=2n,∵2018÷4=504…2,∴OA=+1=1009,∴AA=1009-1=1008,则△OAA的面积是×1×1008=504m2此题考查规律型:数字变换,解题关键在于找到规律三、解答题(本大题共5个小题,共48分)14、(1);(2).【解析】
(1)由题意,得;可再求m的取值范围;(2)比如取m=1.【详解】解:(1)由题意,得.解得.(2)答案不唯一.如:取m=1,此时方程为.解得.本题考核知识点:一元二次方程根判别式.解题关键点:熟记一元二次方程根判别式的意义.15、解:(1)①△A1B1C1如图所示;②△A1B1C1如图所示.(1)连接B1B1,C1C1,得到对称中心M的坐标为(1,1).【解析】试题分析:(1)①根据网格结构找出点A、B、C平移后的对应点A1、B1、C1的位置,然后顺次连接即可.②根据网格结构找出A、B、C关于原点O的中心对称点A1、B1、C1的位置,然后顺次连接即可.(1)连接B1B1,C1C1,交点就是对称中心M.16、【解析】
先根据分式的混合运算顺序和运算法则化简原式,再将m的值代入计算可得.【详解】原式=()••.当m=1时,原式.本题考查了分式的化简求值,解题的关键是熟练掌握分式的混合运算顺序和运算法则.17、58【解析】
作EH⊥AB于H,求出AE的长,根据正弦的概念求出点E到车架AB的距离.【详解】解:∵CE=15cm,CD=30cm,AD=15cm.∴AE=AD+CD+EC=15+30+15=60(cm),如图②,过点E作EH⊥AB于H,在Rt△AEH中,sin∠EAH=,则EH=AE•sin∠EAH=AB•sin75°≈60×0.97≈58(cm).答:点E到AB的距离约为58cm.本题考查的是解直角三角形的知识,正确找出辅助线、掌握锐角三角函数的概念是解题的关键.18、操作与探索:见解析:发现与应用:10.【解析】
(1)根据网格作出相等的角即可得到反射四边形;(2)延长GH交PN的延长线与点A,证明△FPE≌△FPB,根据全等三角形的性质得到AB=2NP,再证明GA=GB,过点G作GK⊥NP于K,根据等腰三角形的性质求出KB=AB=4,再利用勾股定理求出GB的长,即可求出四边形EFGH的周长.【详解】(1)作图如下:(2)延长GH交PN的延长线与点A,过点G作GK⊥NP于K,∵∠1=∠2,∠1=∠5,∴∠2=∠5,又PF=PF,∠FPE=∠FPB,∴△FPE≌△FPB,∴EF=BF,EP=PB,同理AH=EH,NA=EN,∴AB=2NP=8,∵∠B=90°-∠5=90°-∠1,∠A=90°-∠3,∴∠A=∠B,∴GA=GB,则KB=AB=4,∴GB=∴四边形EFGH的周长为2GB=10.此题主要考查矩形的性质,解题的关键是熟知全等三角形的判定与性质.一、填空题(本大题共5个小题,每小题4分,共20分)19、或【解析】
利用当AB=10cm,AD=6cm,由于平行四边形的两组对边互相平行,又AE平分∠BAD,由此可以推出所以∠BAE=∠DAE,则DE=AD=6cm;同理可得:CF=CB=6cm,而EF=CF+DE-DC,由此可以求出EF长;同理可得:当AD=10cm,AB=6cm时,可以求出EF长【详解】解:如图1,当AB=10cm,AD=6cm∵AE平分∠BAD∴∠BAE=∠DAE,又∵AD∥CB∴∠EAB=∠DEA,∴∠DAE=∠AED,则AD=DE=6cm同理可得:CF=CB=6cm∵EF=DE+CF-DC=6+6-10=2(cm)如图2,当AD=10cm,AB=6cm,∵AE平分∠BAD,∴∠BAE=∠DAE又∵AD∥CB∴∠EAB=∠DEA,∴∠DAE=∠AED则AD=DE=10cm同理可得,CF=CB=10cmEF=DE+CF-DC=10+10-6=14(cm)故答案为:2或14.图1图2本题主要考查了角平分线的定义、平行四边形的性质、平行线的性质等知识,关键是平行四边形的不同可能性进行分类讨论.20、1【解析】分析:连接DE并延长交AB于H,证明△DCE≌△HAE,根据全等三角形的性质可得DE=HE,DC=AH,则EF是△DHB的中位线,再根据中位线的性质可得答案.详解:连接DE并延长交AB于H.∵CD∥AB,∴∠C=∠A,∵E是AC中点,∴DE=EH,在△DCE和△HAE中,∠C=∠A,CE=AE,∠CED=∠AEH,∴△DCE≌△HAE(ASA),∴DE=HE,DC=AH,∵F是BD中点,∴EF是△DHB的中位线,∴EF=BH,∴BH=AB-AH=AB-DC=2,∴EF=1.点睛:此题主要考查了全等三角形的判定与性质,以及三角形中位线性质,关键是正确画出辅助线,证明△DCE≌△HAE.21、【解析】
证明△ADD′是等腰直角三角形即可解决问题.【详解】解:由旋转可知:△ABD≌△ACD′,∴∠BAD=∠CAD′,AD=AD′=2,∴∠BAC=∠DAD′=90°,即△ADD′是等腰直角三角形,∴DD′=,故答案为:.本题考查旋转的性质,等腰直角三角形的判定和性质,勾股定理等知识,解题的关键是熟练掌握基本知识,属于中考常考题型.22、【解析】
直接求6的平方根即可.【详解】解:因为6的平方根为,所以答案为:本题考查开平方解一元二次方程,理解开方和乘方的互逆运算是解答本题的关键.23、-1【解析】
根据根与系数的关系可得出,,将其代入中即可得出结论.【详解】∵、是方程的两个实数根,∴,,∴.故答案为:-1.本题考查了根与系数的关系,牢记“两根之和等于,两根之积等于”是解题的关键.二、解答题(本大题共3个小题,共30分)24、(1)详见解析;(2)144°;(3)众数为1.5小时、中位数为1.5小时.
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 赣东学院《微生物与发酵工程》2023-2024学年第一学期期末试卷
- 2022年上海审计师(初级)《审计理论与实务》考试题库(含典型题)
- 《心电图的临床应用》课件
- 三年级科学上册13风教案冀教版
- 2021年消防工程师综合能力模拟题及答案
- 《森林环境微生物》课件
- 《信息系统运作》课件
- 2021年试验检测师(含助理)-道路工程-集料试题
- 2021年度证券从业资格证券发行与承销预热阶段综合测试题(含答案)
- 国家安全线上教育课件
- 四川省泸州市2023-2024学年高二上学期期末考试语文试题
- 个人简历电子版表格下载
- 2024年新疆生产建设兵团第十三师淖毛湖经济技术开发区管委会招聘笔试冲刺题
- 市级实施高水平医院建设“登峰计划”工作实施方案
- 南京航空航天大学宣传
- 中职班主任培训课件
- 居民骨干培训课件
- 《冠脉痉挛指南》课件
- 《经济学方法论》课件
- 环境土壤学课件
- 《计算机组装与维护》课件
评论
0/150
提交评论