2025届四川省遂宁市遂宁二中高一数学第一学期期末达标检测试题含解析_第1页
2025届四川省遂宁市遂宁二中高一数学第一学期期末达标检测试题含解析_第2页
2025届四川省遂宁市遂宁二中高一数学第一学期期末达标检测试题含解析_第3页
2025届四川省遂宁市遂宁二中高一数学第一学期期末达标检测试题含解析_第4页
2025届四川省遂宁市遂宁二中高一数学第一学期期末达标检测试题含解析_第5页
已阅读5页,还剩9页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

2025届四川省遂宁市遂宁二中高一数学第一学期期末达标检测试题注意事项1.考生要认真填写考场号和座位序号。2.试题所有答案必须填涂或书写在答题卡上,在试卷上作答无效。第一部分必须用2B铅笔作答;第二部分必须用黑色字迹的签字笔作答。3.考试结束后,考生须将试卷和答题卡放在桌面上,待监考员收回。一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1.函数在上的部分图象如图所示,则的值为A. B.C. D.2.A B.C.1 D.3.下列函数中,图象关于坐标原点对称的是()A.y=x B.C.y=x D.4.函数的最小正周期是()A. B.C. D.35.A. B.C.2 D.46.若函数满足,,则下列判断错误的是()A. B.C.图象的对称轴为直线 D.f(x)的最小值为-17.地震以里氏震级来度量地震的强度,若设为地震时所散发出来的相对能量,则里氏震级可定义为.在2021年3月下旬,地区发生里氏级地震,地区发生里氏7.3级地震,则地区地震所散发出来的相对能量是地区地震所散发出来的相对能量的()倍.A.7 B.C. D.8.若角的终边经过点,且,则()A.﹣2 B.C. D.29.在底面为正方形的四棱锥中,侧面底面,,,则异面直线与所成的角为()A. B.C. D.10.若集合,则()A. B.C. D.二、填空题:本大题共6小题,每小题5分,共30分。11.若,则实数的值为______.12.不等式对于任意的x,y∈R恒成立,则实数k的取值范围为________13.已知圆C1:(x+1)2+(y-1)2=1,圆C2与圆C1关于直线x-y-1=0对称,则圆C2的方程为______14.圆的圆心坐标是__________15.设、、为的三个内角,则下列关系式中恒成立的是__________(填写序号)①;②;③16.已知正数x,y满足,则的最小值为_________三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17.(1)已知函数(其中,,)的图象与x轴的交于A,B两点,A,B两点的最小距离为,且该函数的图象上的一个最高点的坐标为.求函数的解析式(2)已知角的终边在直线上,求下列函数的值:18.有一圆与直线相切于点,且经过点,求此圆的方程19.已知函数.(1)若函数在区间内存在零点,求实数m的取值范围;(2)若关于x的方程有实数根,求实数m的取值范围.20.如图,在四棱锥中,平面,底面是菱形,,,,为与的交点,为棱上一点.(Ⅰ)证明:平面;(Ⅱ)若平面,求三棱锥的体积.21.已知且.(1)求的解析式;(2)解关于x不等式:.

参考答案一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1、C【解析】由图象最值和周期可求得和,代入可求得,从而得到函数解析式,代入可求得结果.【详解】由图象可得:,代入可得:本题正确选项:【点睛】本题考查三角函数值的求解,关键是能够根据正弦函数的图象求解出函数的解析式.2、A【解析】由题意可得:本题选择A选项.3、B【解析】根据图象关于坐标原点对称的函数是奇函数,结合奇函数的性质进行判断即可.【详解】因为图象关于坐标原点对称的函数是奇函数,所以有:A:函数y=xB:设f(x)=x3,因为C:设g(x)=x,因为g(-x)=D:因为当x=0时,y=1,所以该函数的图象不过原点,因此不是奇函数,不符合题意,故选:B4、A【解析】根据解析式,由正切函数的性质求最小正周期即可.【详解】由解析式及正切函数的性质,最小正周期.故选:A.5、D【解析】因,选D6、C【解析】根据已知求出,再利用二次函数的性质判断得解.【详解】解:由题得,解得,,所以,因为,所以选项A正确;所以,所以选项B正确;因为,所以选项D正确;因为的对称轴为,所以选项C错误故选:C7、C【解析】把两个震级代入后,两式作差即可解决此题【详解】设里氏3.1级地震所散发出来的能量为,里氏7.3级地震所散发出来的能量为,则①,②②①得:,解得:故选:8、D【解析】根据三角函数定义得到,计算得到答案.【详解】故选:【点睛】本题考查了三角函数定义,属于简单题.9、C【解析】由已知可得PA⊥平面ABCD,底面ABCD为正方形,分别过P,D点作AD,AP的平行线交于M,连接CM,AM,因为PB∥CM,所以ACM就是异面直线PB与AC所成的角,再求解即可.【详解】由题意:底面ABCD为正方形,侧面底面,,面面,PA⊥平面ABCD,分别过P,D点作AD,AP的平行线交于M,连接CM,AM,∵PM∥AD,AD∥BC,PM=AD,AD=BC∴PBCM是平行四边形,∴PB∥CM,所以∠ACM就是异面直线PB与AC所成的角设PA=AB=a,在三角形ACM中,,∴三角形ACM是等边三角形所以∠ACM等于60°,即异面直线PB与AC所成的角为60°故选:C.【点睛】思路点睛:先利用面面垂直得到PA⊥平面ABCD,分别过P,D点作AD,AP的平行线交于M,连接CM,AM,得到∠ACM就是异面直线PB与AC所成的角10、B【解析】集合、与集合之间的关系用或,元素0与集合之间的关系用或,ACD选项都使用错误。【详解】,只有B选项的表示方法是正确的,故选:B。【点睛】本题考查了元素与集合、集合与集合之间的关系的表示方法,注意集合与集合之间的关系是子集(包含于),元素与集合之间的关系是属于或不属于。本题属于基础题。二、填空题:本大题共6小题,每小题5分,共30分。11、【解析】由指数式与对数式的互化公式求解即可【详解】因为,所以,故答案为:12、【解析】根据给定条件将命题转化为关于x的一元二次不等式恒成立,再利用关于y的不等式恒成立即可计算作答.【详解】因为对于任意的x,y∈R恒成立,于是得关于x的一元二次不等式对于任意的x,y∈R恒成立,因此,对于任意的y∈R恒成立,故有,解得,所以实数k的取值范围为.故答案为:13、【解析】在圆C2上任取一点(x,y),则此点关于直线对称点(y+1,x-1)在圆C1:上,所以有(y+1+1)2+(x-1-1)2=1,即,所以答案为考点:点关于直线的对称点的求法点评:本题考查一曲线关于一直线对称的曲线方程的求法:在圆C2上任取一点(x,y),则此点关于直线的对称点(y+1,x-1)在圆C1上14、【解析】根据圆的标准方程,即可求得圆心坐标.【详解】因为圆所以圆心坐标为故答案为:【点睛】本题考查了圆的标准方程与圆心的关系,属于基础题.15、②、③【解析】因为是的内角,故,,从而,,,故选②、③.点睛:三角形中各角的三角函数关系,应注意利用这个结论.16、8【解析】将等式转化为,再解不等式即可求解【详解】由题意,正实数,由(时等号成立),所以,所以,即,解得(舍),,(取最小值)所以的最小值为.故答案为:三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17、(1);(2)当为第一象限角时:;当为第三象限角时:.【解析】(1)由题意得,,进而求得,根据最高点结合可得,进而可求得的解析式;(2)由题意得为第一或第三象限角,分两种情况由同角三角函数关系可解得结果.【详解】(1)由题意得,,则,解得.根据最高点得,所以,即,因,所以,取得.所以.(2)由题意得,则为第一或第三象限角.当为第一象限角时:由得,代入得,又,所以,则.所以;当为第三象限角时:同理可得.18、x2+y2-10x-9y+39=0【解析】法一:设出圆的方程,代入B点坐标,计算参数,即可.法二:设出圆的方程,结合题意,建立方程,计算参数,即可.法三:设出圆的一般方程,代入A,B坐标,建立方程,计算参数,即可.法四:计算CA直线方程,计算BP方程,计算点P坐标,计算半径和圆心坐标,建立圆方程,即可【详解】法一:由题意可设所求的方程为,又因为此圆过点,将坐标代入圆的方程求得,所以所求圆的方程为.法二:设圆的方程为,则圆心为,由,,,解得,所以所求圆的方程为.法三:设圆的方程为,由,,在圆上,得,解得,所以所求圆的方程为.法四:设圆心为,则,又设与圆的另一交点为,则的方程为,即.又因为,所以,所以直线的方程为.解方程组,得,所以所以圆心为的中点,半径为.所以所求圆的方程为.【点睛】考查了圆方程的计算方法,关键在于结合题意建立方程组,计算参数,即可,难度中等19、(1);(2).【解析】(1)先得出函数在的单调性,再根据零点存在定理建立不等式组,解之可得实数m的取值范围.(2)由已知将原方程等价于存在实数x使成立.再根据基本不等式得出,由此可求得实数m的取值范围.【详解】解:(1)因为函数与在都是增函数,所以函数在也是增函数,因为函数在区间内存在零点,所以解得.所以实数m的取值范围为.(2)关于x的方程有实数根等价于关于x的方程有实数根,所以存在实数x使成立.因为(当且仅当,时取等号),所以,所以实数m的取值范围是.20、(Ⅰ)答案见详解;(Ⅱ).【解析】(Ⅰ)平面,,四边形是菱形,,平面;(Ⅱ)连接,由平面,推出,从而是的中点,那么三棱锥的体积则可通过中点进行转化,变为三棱锥体积的一半.【详解】(Ⅰ)平面,平面,,四边形是菱形,,,平面;(Ⅱ)如图,连接,平面,平面平面,,是的中点,是的中点,菱形中,,,是等边三角形,,,.【点睛】本题主要考查线面垂直的证明以及棱锥体积的计算,属于中档题.一般计算规则几何体的体积时

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论