版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2025届甘肃省天水市清水县第四中学高一上数学期末学业质量监测试题考生须知:1.全卷分选择题和非选择题两部分,全部在答题纸上作答。选择题必须用2B铅笔填涂;非选择题的答案必须用黑色字迹的钢笔或答字笔写在“答题纸”相应位置上。2.请用黑色字迹的钢笔或答字笔在“答题纸”上先填写姓名和准考证号。3.保持卡面清洁,不要折叠,不要弄破、弄皱,在草稿纸、试题卷上答题无效。一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1.某几何体的三视图如图所示,则该几何体的表面积等于A. B.C. D.152.函数的图象大致为()A. B.C. D.3.函数的图象大致是()A. B.C. D.4.在人类用智慧架设的无数座从已知通向未知的金桥中,用二分法求方程的近似解是其中璀璨的一座.已知为锐角的内角,满足,则()A. B.C. D.5.已知,,,,则A. B.C. D.6.经过点(2,1)的直线l到A(1,1),B(3,5)两点的距离相等,则直线l的方程为A.2x-y-3=0 B.x=2C.2x-y-3=0或x=2 D.都不对7.函数的单调减区间为()A. B.C. D.8.与直线垂直,且在轴上的截距为-2的直线方程为()A. B.C. D.9.复利是一种计算利息的方法.即把前一期的利息和本金加在一起算作本金,再计算下一期的利息.某同学有压岁钱1000元,存入银行,年利率为2.25%;若放入微信零钱通或者支付宝的余额宝,年利率可达4.01%.如果将这1000元选择合适方式存满5年,可以多获利息()元.(参考数据:)A.176 B.100C.77 D.8810.我国在2020年9月22日在联合国大会提出,二氧化碳排放力争于2030年前实现碳达峰,争取在2060年前实现碳中和.为了响应党和国家的号召,某企业在国家科研部门的支持下,进行技术攻关:把二氧化碳转化为一种可利用的化工产品,经测算,该技术处理总成本y(单位:万元)与处理量x(单位:吨)之间的函数关系可近似表示为,当处理量x等于多少吨时,每吨的平均处理成本最少()A.120 B.200C.240 D.400二、填空题:本大题共6小题,每小题5分,共30分。11.函数的最小值为_________________12.已知2弧度的圆心角所对的弦长为2,那么这个圆心角所对弧长为____13.在正方体ABCD-A1B1C1D1中,E、F是分别是棱A1B1、A1D1的中点,则A1B与EF所成角的大小为______14.已知函数,R的图象与轴无公共点,求实数的取值范围是_________.15.请写出一个同时满足下列两个条件的函数:____________.(1),若则(2)16.函数(且)的图象恒过定点_________三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17.整治人居环境,打造美丽乡村,某村准备将一块由一个半圆和长方形组成的空地进行美化,如图,长方形的边为半圆的直径,O为半圆的圆心,,现要将此空地规划出一个等腰三角形区域(底边)种植观赏树木,其余的区域种植花卉.设.(1)当时,求的长;(2)求三角形区域面积的最大值.18.已知直线:的倾斜角为(1)求a;(2)若直线与直线平行,且在y轴上的截距为-2,求直线与直线的交点坐标19.已知向量,满足,,且,的夹角为.(1)求;(2)若,求的值.20.已知函数(1)试判断函数的奇偶性;(2)求函数的值域.21.已知角的顶点与坐标原点重合,始边与x轴的非负半轴重合,终边过点(1)求的值;(2)若,求的值
参考答案一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1、B【解析】根据三视图可知,该几何体为一个直四棱柱,底面是直角梯形,两底边长分别为,高为,直四棱柱的高为,所以底面周长为,故该几何体的表面积为,故选B考点:1.三视图;2.几何体的表面积2、A【解析】由函数的奇偶性质可知函数为偶函数,再结合时函数的符号即可得答案.【详解】解:由题知函数的定义域为,关于原点对称,,所以函数为偶函数,其图像关于轴对称,故排除B,D,当时,,故排除C,得A为正确选项.故选:A3、B【解析】根据题意,先分析函数的奇偶性,排除AC,再判断函数在上的符号,排除D,即可得答案【详解】∵f(x)定义域[-1,1]关于原点对称,且,∴f(x)为偶函数,图像关于y轴对称,故AC不符题意;在区间上,,,则有,故D不符题意,B正确.故选:B4、C【解析】设设,则在单调递增,再利用零点存在定理即可判断函数的零点所在的区间,也即是方程的根所在的区间.【详解】因为为锐角的内角,满足,设,则在单调递增,,在取,得,,因为,所以的零点位于区间,即满足的角,故选:C【点睛】关键点点睛:本题解题的关键点是令,根据零点存在定理判断函数的零点所在的区间.5、C【解析】分别求出的值再带入即可【详解】因为,所以因为,所以所以【点睛】本题考查两角差的余弦公式.属于基础题6、C【解析】当直线l的斜率不存在时,直线x=2显然满足题意;当直线l的斜率存在时,设直线l的斜率为k则直线l为y-1=kx-2,即由A到直线l的距离等于B到直线l的距离得:-kk化简得:-k=k-4或k=k-4(无解),解得k=2∴直线l的方程为2x-y-3=0综上,直线l的方程为2x-y-3=0或x=2故选C7、A【解析】求出的范围,函数的单调减区间为的增区间,即可得到答案.【详解】由可得或函数的单调减区间为的增区间故选:A8、A【解析】先求出直线的斜率,再利用直线的点斜式方程求解.【详解】由题得所求直线的斜率为,∴所求直线方程为,整理为故选:A【点睛】方法点睛:求直线的方程,常用的方法:待定系数法,先定式(从直线的五种形式中选择一种作为直线的方程),后定量(求出直线方程中的待定系数).9、B【解析】由题意,某同学有压岁钱1000元,分别计算存入银行和放入微信零钱通或者支付宝的余额宝所得利息,即可得到答案【详解】由题意,某同学有压岁钱1000元,存入银行,年利率为2.25%,若在银行存放5年,可得金额为元,即利息为元,若放入微信零钱通或者支付宝的余额宝时,利率可达4.01%,若存放5年,可得金额为元,即利息为元,所以将这1000元选择合适方式存满5年,可以多获利息元,故选B【点睛】本题主要考查了等比数列的实际应用问题,其中解答中认真审题,准确理解题意,合理利用等比数列的通项公式求解是解答的关键,着重考查了分析问题和解答问题的能力,属于基础题10、D【解析】先根据题意求出每吨的平均处理成本与处理量之间的函数关系,然后分和分析讨论求出其最小值即可【详解】由题意得二氧化碳每吨的平均处理成本为,当时,,当时,取得最小值240,当时,,当且仅当,即时取等号,此时取得最小值200,综上,当每月得理量为400吨时,每吨的平均处理成本最低为200元,故选:D二、填空题:本大题共6小题,每小题5分,共30分。11、【解析】利用同角三角函数的基本关系,化简函数的解析式,配方利用二次函数的性质,求得y的最小值【详解】y=sin2x﹣2cosx+2=3﹣cos2x﹣2cosx=﹣(cosx+1)2+4,故当cosx=1时,y有最小值等于0,故答案为0【点睛】本题考查同角三角函数的基本关系的应用,二次函数的图象与性质,把函数配方是解题的关键12、【解析】解直角三角形AOC,求出半径AO,代入弧长公式求出弧长的值解:如图:设∠AOB=2,AB=2,过点0作OC⊥AB,C为垂足,并延长OC交于D,则∠AOD=∠BOD=1,AC=AB=1Rt△AOC中,r=AO==,从而弧长为α×r=2×=,故答案为考点:弧长公式13、【解析】解:如图,将EF平移到A1B1,再平移到AC,则∠B1AC为异面直线AB1与EF所成的角三角形B1AC为等边三角形,故异面直线AB1与EF所成的角60°,14、【解析】令=t>0,则g(t)=>0对t>0恒成立,即对t>0恒成立,再由基本不等式求出的最大值即可.【详解】,R,令=t>0,则f(x)=g(t)=,由题可知g(t)在t>0时与横轴无公共点,则对t>0恒成立,即对t>0恒成立,∵,当且仅当,即时,等号成立,∴,∴.故答案为:.15、,答案不唯一【解析】由条件(1),若则.可知函数为R上增函数;由条件(2).可知函数可能为指数型函数.【详解】令,则为R上增函数,满足条件(1).又,故即成立.故答案为:,(,等均满足题意)16、【解析】令对数的真数为,即可求出定点的横坐标,再代入求值即可;【详解】解:因为函数(且),令,解得,所以,即函数恒过点;故答案为:三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17、(1)(2)【解析】(1)利用三角函数表达出的长;(2)用的三角函数表达出三角形区域面积,利用换元法转化为二次函数,求出三角形区域面积的最大值.【小问1详解】设MN与AB相交于点E,则,则,故的长为【小问2详解】过点P作PF⊥MN于点F,则PF=AE=,而MN=ME+EN=,则三角形区域面积为,设,因为,所以,故,而,则,故当时,取得最大值,故三角形区域面积的最大值为18、(1)-1;(2)(4,2).【解析】(1)根据倾斜角和斜率的关系可得,即可得a值.(2)由直线平行有直线为,联立直线方程求交点坐标即可.【小问1详解】因为直线的斜率为,即,故【小问2详解】依题意,直线的方程为将代入,得,故所求交点的(4,2)19、(1)-12;(2)12.【解析】(1)按照向量的点积公式得到,再由向量运算的分配律得到结果;(2)根据向量垂直得到,按照运算公式展开得到结果即可.【详解】(1)由题意得,∴(2)∵,∴,∴,∴,∴【点睛】这个题目考查了向量的点积运算,以及向量垂直的转化;向量的两个作用:①载体作用:关键是利用向量的意义、作用脱去“向量外衣”,转化为我们熟悉的数学问题;②工具作用:利用向量可解决一些垂直、平行、夹角与距离问题.20、(1)奇函数;(2).【解析】化简函数f(x)=log3(2-sinx)-log3(2+sinx)(1)利用函数的奇偶性的定义直接求解即可;(2)把分子分离常数,根据-1
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2024水力发电项目开发与合作协议
- 2024年汽油产品销售渠道拓展与采购合作框架协议3篇
- 2024年私人投资合作协议
- 2024年酒店客户隐私保护合同书版B版
- 2025年度环保设备安装工程收款协议书3篇
- 社区公园设计师的绿化美化与公众服务
- 网络营销行业网络推广培训总结
- 2025年度KTV员工培训及职业发展规划合同3篇
- 通知通告发布总结
- 2024房地产项目开发与销售代理合同
- 2024-2025学年度广东省春季高考英语模拟试卷(解析版) - 副本
- 广东省广州市2023-2024学年三年级上学期英语期中试卷(含答案)
- DB11T 1282-2022 数据中心节能设计规范
- GB/T 44694-2024群众性体育赛事活动安全评估工作指南
- 【二年级】上册道德与法治-14 家乡物产养育我 教学设计(表格式)人教版道德与法治 二年级上册
- 陶笛欣赏课件
- IEC60068系列标准清单
- 广东省广州市2023-2024学年七年级上学期期末考试数学试题(含答案)
- 廉政法规知识测试及答案
- 形式与政策学习通超星期末考试答案章节答案2024年
- 期末考试-2024-2025学年语文四年级上册统编版
评论
0/150
提交评论