吉林省蛟河市2025届高二数学第一学期期末学业水平测试模拟试题含解析_第1页
吉林省蛟河市2025届高二数学第一学期期末学业水平测试模拟试题含解析_第2页
吉林省蛟河市2025届高二数学第一学期期末学业水平测试模拟试题含解析_第3页
吉林省蛟河市2025届高二数学第一学期期末学业水平测试模拟试题含解析_第4页
吉林省蛟河市2025届高二数学第一学期期末学业水平测试模拟试题含解析_第5页
已阅读5页,还剩13页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

吉林省蛟河市2025届高二数学第一学期期末学业水平测试模拟试题请考生注意:1.请用2B铅笔将选择题答案涂填在答题纸相应位置上,请用0.5毫米及以上黑色字迹的钢笔或签字笔将主观题的答案写在答题纸相应的答题区内。写在试题卷、草稿纸上均无效。2.答题前,认真阅读答题纸上的《注意事项》,按规定答题。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.在等差数列中,,,则使数列的前n项和成立的最大正整数n=()A.2021 B.2022C.4041 D.40422.德国数学家莱布尼茨是微积分的创立者之一,他从几何问题出发,引进微积分概念.在研究切线时认识到,求曲线的切线的斜率依赖于纵坐标的差值和横坐标的差值,以及当此差值变成无限小时它们的比值,这也正是导数的几何意义.设是函数的导函数,若,且对,,且总有,则下列选项正确的是()A. B.C. D.3.在平面上有一系列点,对每个正整数,点位于函数的图象上,以点为圆心的与轴都相切,且与彼此外切.若,且,,的前项之和为,则()A. B.C. D.4.已知斜率为1的直线l过椭圆的右焦点,交椭圆于A,B两点,则弦AB的长为()A. B.C. D.5.倾斜角为45°,在y轴上的截距为-1的直线方程是()A.x-y+1=0 B.x-y-1=0C.x+y-1=0 D.x+y+1=06.已知抛物线的焦点为F,点A在抛物线上,直线FA与抛物线的准线交于点M,O为坐标原点.若,且,则()A.1 B.2C.3 D.47.在矩形中,,在该矩形内任取一点M,则事件“”发生的概率为()A. B.C. D.8.若椭圆与直线交于两点,过原点与线段AB中点的直线的斜率为,则A. B.C. D.29.若某群体中成员只用现金支付的概率为,既用现金支付也用非现金支付的概率为,则不用现金支付的概率为()A. B.C. D.10.已知点在抛物线的准线上,则该抛物线的焦点坐标是()A. B.C. D.11.意大利数学家斐波那契,以兔子繁殖为例,引入“兔子数列”,,,,,,,,…,在实际生活中很多花朵的瓣数恰是斐波那契数列中的数,斐波那契数列在物理化学等领域也有着广泛的应用.已知斐波那契数列满足:,,,若,则等于()A. B.C. D.12.从装有2个红球和2个白球的口袋内任取两个球,则下列选项中的两个事件为互斥事件的是()A.至多有1个白球;都是红球 B.至少有1个白球;至少有1个红球C.恰好有1个白球;都是红球 D.至多有1个白球;至多有1个红球二、填空题:本题共4小题,每小题5分,共20分。13.在平面直角坐标系xOy中,AB是圆O:x2+y2=1的直径,且点A在第一象限;圆O1:(x﹣a)2+y2=r2(a>0)与圆O外离,线段AO1与圆O1交于点M,线段BM与圆O交于点N,且,则a的取值范围为_______.14.已知双曲线:,斜率为的直线与E的左右两支分别交于A,B两点,点P的坐标为,直线AP交E于另一点C,直线BP交E于另一点D.若直线CD的斜率为,则E的离心率为___________15.某中学高三(2)班甲,乙两名同学自高中以来每次考试成绩的茎叶图如图所示,则甲的中位数与乙的极差的和为___________.16.某校老年、中年和青年教师的人数见如表,采用分层抽样的方法调查教师的身体状况,在抽取的样本中,青年教师有人,则该样本的老年教师人数为______.类别老年教师中年教师青年教师合计人数900180016004300三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(12分)如图,在长方体中,底面是边长为1的正方形,侧棱长为2,且动点P在线段AC上运动(1)若Q为的中点,求点Q到平面的距离;(2)设直线与平面所成角为,求的取值范围18.(12分)设等比数列的前项和为,且()(1)求数列的通项公式;(2)在与之间插入个实数,使这个数依次组成公差为的等差数列,设数列的前项和为,求证:19.(12分)在等差数列中,已知公差,且成等比数列(1)求数列的通项公式;(2)记,求数列的前项和20.(12分)已知命题:“曲线表示焦点在轴上的椭圆”,命题:“曲线表示双曲线”.(1)若是真命题,求实数的取值范围;(2)若是的必要不充分条件,求实数的取值范围.21.(12分)如图,在三棱锥中,底面,.点,,分别为棱,,的中点,是线段的中点,,(1)求证:平面;(2)求二面角的正弦值;(3)已知点在棱上,且直线与直线所成角的余弦值为,求线段的长22.(10分)已知圆C的圆心为,且圆C经过点(1)求圆C的一般方程;(2)若圆与圆C恰有两条公切线,求实数m的取值范围

参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、C【解析】根据等差数列的性质易得,,再应用等差数列前n项和公式及等差中项、下标和的性质可得、,即可确定答案.【详解】因为是等差数列且,,所以,,.故选:C.2、D【解析】由,得在上单调递增,并且由的图象是向上凸,进而判断选项.【详解】由,得在上单调递增,因为,所以,故A不正确;对,,且,总有,可得函数的图象是向上凸,可用如图的图象来表示,由表示函数图象上各点处的切线的斜率,由函数图象可知,随着的增大,的图象越来越平缓,即切线的斜率越来越小,所以,故B不正确;,表示点与点连线的斜率,由图可知,所以D正确,C不正确.故选:D.【点睛】本题考查以数学文化为背景,导数的几何意义,根据函数的单调性比较函数值的大小,属于中档题型.3、C【解析】根据两圆的几何关系及其圆心在函数的图象上,即可得到递推关系式,通过构造等差数列求得的通项公式,得出,最后利用裂项相消,求出数列前项和,即可求出.详解】由与彼此外切,则,,,又∵,∴,故为等差数列且,,则,,则,即,故答案选:.4、C【解析】根据题意求得直线l的方程,设,联立直线与椭圆的方程,利用韦达定理求得,再利用弦长公式即可得出答案.【详解】由椭圆知,,所以,所以右焦点坐标为,则直线的方程为,设,联立,消y得,,则,所以.即弦AB长为.故选:C.5、B【解析】由题意,,所以,即,故选B6、D【解析】设,由和在抛物线上,求出和,利用求出p.【详解】过A作AP垂直x轴与P.抛物线的焦点为,准线方程为.设,因为,所以,解得:.因为在抛物线上,则.所以,即,解得:.故选:D7、D【解析】利用几何概型的概率公式,转化为面积比直接求解.【详解】以AB为直径作圆,当点M在圆外时,.所以事件“”发生的概率为.故选:D8、D【解析】细查题意,把代入椭圆方程,得,整理得出,设出点的坐标,由根与系数的关系可以推出线段的中点坐标,再由过原点与线段的中点的直线的斜率为,进而可推导出的值.【详解】联立椭圆方程与直线方程,可得,整理得,设,则,从而线段的中点的横坐标为,纵坐标,因为过原点与线段中点的直线的斜率为,所以,所以,故选D.【点睛】该题是一道关于直线与椭圆的综合性题目,涉及到的知识点有直线与椭圆相交时对应的解题策略,中点坐标公式,斜率坐标公式,属于简单题目.9、A【解析】利用对立事件的概率公式可求得所求事件的概率.【详解】由对立事件概率公式可知,该群体中的成员不用现金支付的概率为.故选:A.10、C【解析】首先表示出抛物线的准线,根据点在抛物线的准线上,即可求出参数,即可求出抛物线的焦点.【详解】解:抛物线的准线为因为在抛物线的准线上故其焦点为故选:【点睛】本题考查抛物线的简单几何性质,属于基础题.11、A【解析】利用可化简得,由此可得.【详解】由得:,,即.故选:A.12、C【解析】根据试验过程进行分析,利用互斥事件的定义对四个选项一一判断即可.【详解】对于A:“至多有1个白球”包含都是红球和一红一白,“都是红球”包含都是红球,所以“至多有1个白球”与“都是红球”不是互斥事件.故A错误;对于B:“至少有1个白球”包含都是白球和一红一白,“至少有1个红球”包含都是红球和一红一白,所以“至少有1个白球”与“至少有1个红球”不是互斥事件.故B错误;对于C:“恰好有1个白球”包含一红一白,“都是红球”包含都是红球,所以“恰好有1个白球”与“都是红球”是互斥事件.故C错误;对于D:“至多有1个红球”包含都是白球和一红一白,“至多有1个白球”包含都是红球和一红一白,所以“至多有1个白球”与“至多有1个红球”不是互斥事件.故D错误.故选:C二、填空题:本题共4小题,每小题5分,共20分。13、【解析】根据判断出四边形为平行四边形,由此求得圆的方程以及的长,进而判断出点在圆上,根据圆与圆的位置关系,求得的取值范围.【详解】四边形ONO1M为平行四边形,即ON=MO1=r=1,所以圆的方程为,且ON为△ABM的中位线AM=2ON=2AO1=3,故点A在以O1为圆心,3为半径的圆上,该圆的方程为:,故与x2+y2=1在第一象限有交点,即2<a<4,由,解得,故a的取值范围为(,4).故答案为:【点睛】本小题主要考查圆与圆的位置关系,考查化归与转化的数学思想方法,考查数形结合的数学思想方法,属于难题.14、【解析】分别设线段的中点,线段的中点,再利用点差法可表示出,由平行关系易知三点共线,从而利用斜率相等的关系构造方程,代入整理可得到关系,利用双曲线得到关于的齐次方程,进而求得离心率.【详解】设,,线段的中点,两式相减得:…①设,,线段的中点同理可得:…②,易知三点共线,将①②代入得:,所以,即,由题意可得,故.∴,即故答案为:15、111【解析】求出甲的中位数和乙的极差即得解.【详解】解:由题得甲的中位数为,乙的极差为,所以它们的和为.故答案为:11116、【解析】由题意,总体中青年教师与老年教师比例为;设样本中老年教师的人数为x,由分层抽样的性质可得总体与样本中青年教师与老年教师的比例相等,即,解得.故答案为.考点:分层抽样.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17、(1)1(2)【解析】(1)以AB,AD,为x,y,z轴正向建立直角坐标系,利用空间向量法求出平面的法向量,结合点到平面的距离的向量求法计算即可;(2)设点,,进而得出的坐标,利用向量的数量积即可列出线面角正弦值的表达式,结合二次函数的性质即可得出结果.【小问1详解】由题意,分别以AB,AD,为x,y,z轴正向建立直角坐标系,于是,,,,,设平面法向量所以,解得,,令得,,设点Q到平面的距离为d,【小问2详解】由(1)可知,平面的法向量,由P点在线段AC上运动可设点,于是,,所以,的取值范围是18、(1)(2)见解析【解析】(1)由两式相减得,所以()因为等比,且,所以,所以故(2)由题设得,所以,所以,则,所以19、(1)an=n(2)【解析】(1)由已知条件可得(d+2)2=2d+7,从而可求出公差,进而可求得数列的通项公式,(2)由(1)得,然后利用错位相减法求【小问1详解】因a1,a2+1,a3+6成等比数列,所以又a1=1,所以(d+2)2=2d+7,所以d=1或d=(舍),所以an=n;【小问2详解】因为,所以,所以,所以所以20、(1);(2).【解析】(1)根据方程为焦点在轴上的椭圆的条件列不等式组,解不等式组求得的取值范围.(2)求得为真命题时的取值范围,结合是的必要不充分条件列不等式组,解不等式组求得的取值范围.【详解】(1)若是真命题,所以,解得,所以的取值范围是.(2)由(1)得,是真命题时,的取值范围是,为真命题时,,所以的取值范围是因为是的必要不充分条件,所以,所以,等号不同时取得,所以【点睛】本小题主要考查椭圆、双曲线,考查必要不充分条件求参数.21、(1)证明见解析;(2);(3)或【解析】本小题主要考查直线与平面平行、二面角、异面直线所成的角等基础知识.考查用空间向量解决立体几何问题的方法.考查空间想象能力、运算求解能力和推理论证能力.首先要建立空间直角坐标系,写出相关点的坐标,证明线面平行只需求出平面的法向量,计算直线对应的向量与法向量的数量积为0,求二面角只需求出两个半平面对应的法向量,借助法向量的夹角求二面角,利用向量的夹角公式,求出异面直线所成角的余弦值,利用已知条件,求出的值.试题解析:如图,以A为原点,分别以,,方向为x轴、y轴、z轴正方向建立空间直角坐标系.依题意可得A(0,0,0),B(2,0,0),C(0,4,0),P(0,0,4),D(0,0,2),E(0,2,2),M(0,0,1),N(1,2,0).(1)证明:=(0,2,0),=(2,0,).设,为平面BDE的法向量,则,即.不妨设,可得.又=(1,2,),可得.因为平面BDE,所以MN//平面BDE.(2)解:易知为平面CEM的一个法向量.设为平面EMN的法向量,则,因为,,所以.不妨设,可得.因此有,于是.所以,二面角C—EM—N的正弦值为.(3)解:依题意,设AH=h(),则H(0,0,h),进而可得,.由已知,得,整理得,解得,或.所以,线段AH的长为或.【考点】直线与平面平行、二面角、异面直线所成

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论