2025届贵州省遵义第四中学数学高三上期末质量检测试题含解析_第1页
2025届贵州省遵义第四中学数学高三上期末质量检测试题含解析_第2页
2025届贵州省遵义第四中学数学高三上期末质量检测试题含解析_第3页
2025届贵州省遵义第四中学数学高三上期末质量检测试题含解析_第4页
2025届贵州省遵义第四中学数学高三上期末质量检测试题含解析_第5页
已阅读5页,还剩15页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

2025届贵州省遵义第四中学数学高三上期末质量检测试题注意事项1.考生要认真填写考场号和座位序号。2.试题所有答案必须填涂或书写在答题卡上,在试卷上作答无效。第一部分必须用2B铅笔作答;第二部分必须用黑色字迹的签字笔作答。3.考试结束后,考生须将试卷和答题卡放在桌面上,待监考员收回。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.已知集合,,若,则的最小值为()A.1 B.2 C.3 D.42.已知集合,,则等于()A. B. C. D.3.在满足,的实数对中,使得成立的正整数的最大值为()A.5 B.6 C.7 D.94.已知公差不为0的等差数列的前项的和为,,且成等比数列,则()A.56 B.72 C.88 D.405.《九章算术》是我国古代数学名著,书中有如下问题:“今有勾六步,股八步,问勾中容圆,径几何?”其意思为:“已知直角三角形两直角边长分别为6步和8步,问其内切圆的直径为多少步?”现从该三角形内随机取一点,则此点取自内切圆的概率是()A. B. C. D.6.已知、分别为双曲线:(,)的左、右焦点,过的直线交于、两点,为坐标原点,若,,则的离心率为()A.2 B. C. D.7.3本不同的语文书,2本不同的数学书,从中任意取出2本,取出的书恰好都是数学书的概率是()A. B. C. D.8.设,命题“存在,使方程有实根”的否定是()A.任意,使方程无实根B.任意,使方程有实根C.存在,使方程无实根D.存在,使方程有实根9.已知函数是上的偶函数,是的奇函数,且,则的值为()A. B. C. D.10.一辆邮车从地往地运送邮件,沿途共有地,依次记为,,…(为地,为地).从地出发时,装上发往后面地的邮件各1件,到达后面各地后卸下前面各地发往该地的邮件,同时装上该地发往后面各地的邮件各1件,记该邮车到达,,…各地装卸完毕后剩余的邮件数记为.则的表达式为().A. B. C. D.11.1777年,法国科学家蒲丰在宴请客人时,在地上铺了一张白纸,上面画着一条条等距离的平行线,而他给每个客人发许多等质量的,长度等于相邻两平行线距离的一半的针,让他们随意投放.事后,蒲丰对针落地的位置进行统计,发现共投针2212枚,与直线相交的有704枚.根据这次统计数据,若客人随意向这张白纸上投放一根这样的针,则针落地后与直线相交的概率约为()A. B. C. D.12.以,为直径的圆的方程是A. B.C. D.二、填空题:本题共4小题,每小题5分,共20分。13.函数在区间上的值域为______.14.如图,两个同心圆的半径分别为和,为大圆的一条直径,过点作小圆的切线交大圆于另一点,切点为,点为劣弧上的任一点(不包括两点),则的最大值是__________.15.若实数x,y满足不等式组x+y-4≤0,2x-3y-8≤0,x≥1,则目标函数16.下图是一个算法流程图,则输出的S的值是______.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(12分)在平面直角坐标系中,直线的倾斜角为,且经过点.以坐标原点O为极点,x轴正半轴为极轴建立极坐标系,直线,从原点O作射线交于点M,点N为射线OM上的点,满足,记点N的轨迹为曲线C.(Ⅰ)求出直线的参数方程和曲线C的直角坐标方程;(Ⅱ)设直线与曲线C交于P,Q两点,求的值.18.(12分)如图,四棱锥中,底面,,点在线段上,且.(1)求证:平面;(2)若,,,,求二面角的正弦值.19.(12分)已知命题:,;命题:函数无零点.(1)若为假,求实数的取值范围;(2)若为假,为真,求实数的取值范围.20.(12分)已知数列满足且(1)求数列的通项公式;(2)求数列的前项和.21.(12分)已知函数,.(1)当时,讨论函数的单调性;(2)若,当时,函数,求函数的最小值.22.(10分)已知矩形中,,E,F分别为,的中点.沿将矩形折起,使,如图所示.设P、Q分别为线段,的中点,连接.(1)求证:平面;(2)求二面角的余弦值.

参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、B【解析】

解出,分别代入选项中的值进行验证.【详解】解:,.当时,,此时不成立.当时,,此时成立,符合题意.故选:B.【点睛】本题考查了不等式的解法,考查了集合的关系.2、B【解析】

解不等式确定集合,然后由补集、并集定义求解.【详解】由题意或,∴,.故选:B.【点睛】本题考查集合的综合运算,以及一元二次不等式的解法,属于基础题型.3、A【解析】

由题可知:,且可得,构造函数求导,通过导函数求出的单调性,结合图像得出,即得出,从而得出的最大值.【详解】因为,则,即整理得,令,设,则,令,则,令,则,故在上单调递增,在上单调递减,则,因为,,由题可知:时,则,所以,所以,当无限接近时,满足条件,所以,所以要使得故当时,可有,故,即,所以:最大值为5.故选:A.【点睛】本题主要考查利用导数求函数单调性、极值和最值,以及运用构造函数法和放缩法,同时考查转化思想和解题能力.4、B【解析】

,将代入,求得公差d,再利用等差数列的前n项和公式计算即可.【详解】由已知,,,故,解得或(舍),故,.故选:B.【点睛】本题考查等差数列的前n项和公式,考查等差数列基本量的计算,是一道容易题.5、C【解析】

利用直角三角形三边与内切圆半径的关系求出半径,再分别求出三角形和内切圆的面积,根据几何概型的概率计算公式,即可求解.【详解】由题意,直角三角形的斜边长为,利用等面积法,可得其内切圆的半径为,所以向次三角形内投掷豆子,则落在其内切圆内的概率为.故选:C.【点睛】本题主要考查了面积比的几何概型的概率的计算问题,其中解答中熟练应用直角三角形的性质,求得其内切圆的半径是解答的关键,着重考查了推理与运算能力.6、D【解析】

作出图象,取AB中点E,连接EF2,设F1A=x,根据双曲线定义可得x=2a,再由勾股定理可得到c2=7a2,进而得到e的值【详解】解:取AB中点E,连接EF2,则由已知可得BF1⊥EF2,F1A=AE=EB,设F1A=x,则由双曲线定义可得AF2=2a+x,BF1﹣BF2=3x﹣2a﹣x=2a,所以x=2a,则EF2=2a,由勾股定理可得(4a)2+(2a)2=(2c)2,所以c2=7a2,则e故选:D.【点睛】本题考查双曲线定义的应用,考查离心率的求法,数形结合思想,属于中档题.对于圆锥曲线中求离心率的问题,关键是列出含有中两个量的方程,有时还要结合椭圆、双曲线的定义对方程进行整理,从而求出离心率.7、D【解析】

把5本书编号,然后用列举法列出所有基本事件.计数后可求得概率.【详解】3本不同的语文书编号为,2本不同的数学书编号为,从中任意取出2本,所有的可能为:共10个,恰好都是数学书的只有一种,∴所求概率为.故选:D.【点睛】本题考查古典概型,解题方法是列举法,用列举法写出所有的基本事件,然后计数计算概率.8、A【解析】

只需将“存在”改成“任意”,有实根改成无实根即可.【详解】由特称命题的否定是全称命题,知“存在,使方程有实根”的否定是“任意,使方程无实根”.故选:A【点睛】本题考查含有一个量词的命题的否定,此类问题要注意在两个方面作出变化:1.量词,2.结论,是一道基础题.9、B【解析】

根据函数的奇偶性及题设中关于与关系,转换成关于的关系式,通过变形求解出的周期,进而算出.【详解】为上的奇函数,,而函数是上的偶函数,,,故为周期函数,且周期为故选:B【点睛】本题主要考查了函数的奇偶性,函数的周期性的应用,属于基础题.10、D【解析】

根据题意,分析该邮车到第站时,一共装上的邮件和卸下的邮件数目,进而计算可得答案.【详解】解:根据题意,该邮车到第站时,一共装上了件邮件,需要卸下件邮件,则,故选:D.【点睛】本题主要考查数列递推公式的应用,属于中档题.11、D【解析】

根据统计数据,求出频率,用以估计概率.【详解】.故选:D.【点睛】本题以数学文化为背景,考查利用频率估计概率,属于基础题.12、A【解析】

设圆的标准方程,利用待定系数法一一求出,从而求出圆的方程.【详解】设圆的标准方程为,由题意得圆心为,的中点,根据中点坐标公式可得,,又,所以圆的标准方程为:,化简整理得,所以本题答案为A.【点睛】本题考查待定系数法求圆的方程,解题的关键是假设圆的标准方程,建立方程组,属于基础题.二、填空题:本题共4小题,每小题5分,共20分。13、【解析】

由二倍角公式降幂,再由两角和的正弦公式化函数为一个角的一个三角函数形式,结合正弦函数性质可求得值域.【详解】,,则,.故答案为:.【点睛】本题考查三角恒等变换(二倍角公式、两角和的正弦公式),考查正弦函数的的单调性和最值.求解三角函数的性质的性质一般都需要用三角恒等变换化函数为一个角的一个三角函数形式,然后结合正弦函数的性质得出结论.14、【解析】

以为坐标原点,所在的直线为轴,的垂直平分线为轴,建立平面直角坐标系,从而可得、,,,然后利用向量数量积的坐标运算可得,再根据辅助角公式以及三角函数的性质即可求解.【详解】以为坐标原点,所在的直线为轴,的垂直平分线为轴,建立平面直角坐标系,则、,由,且,所以,所以,即又平分,所以,则,设,则,,所以,所以,,所以的最大值是.故答案为:【点睛】本题考查了向量数量积的坐标运算、利用向量解决几何问题,同时考查了辅助角公式以及三角函数的性质,属于中档题.15、12【解析】

画出约束条件的可行域,求出最优解,即可求解目标函数的最大值.【详解】根据约束条件画出可行域,如下图,由x+y-4=02x-3y-8=0,解得目标函数y=3x-z,当y=3x-z过点(4,0)时,z有最大值,且最大值为12.故答案为:12.【点睛】本题考查线性规划的简单应用,属于基础题.16、【解析】

根据流程图,运行程序即得.【详解】第一次运行,;第二次运行,;第三次运行,;第四次运行;所以输出的S的值是.故答案为:【点睛】本题考查算法流程图,是基础题.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17、(Ⅰ)(t为参数),;(Ⅱ)1.【解析】

(Ⅰ)直接由已知写出直线l1的参数方程,设N(ρ,θ),M(ρ1,θ1),(ρ>0,ρ1>0),由题意可得,即ρ=4cosθ,然后化为普通方程;(Ⅱ)将l1的参数方程代入C的直角坐标方程中,得到关于t的一元二次方程,再由参数t的几何意义可得|AP|•|AQ|的值.【详解】(Ⅰ)直线l1的参数方程为,(t为参数)即(t为参数).设N(ρ,θ),M(ρ1,θ1),(ρ>0,ρ1>0),则,即,即ρ=4cosθ,∴曲线C的直角坐标方程为x2-4x+y2=0(x≠0).(Ⅱ)将l1的参数方程代入C的直角坐标方程中,得,即,t1,t2为方程的两个根,∴t1t2=-1,∴|AP|•|AQ|=|t1t2|=|-1|=1.【点睛】本题考查简单曲线的极坐标方程,考查直角坐标方程与直角坐标方程的互化,训练了直线参数方程中参数t的几何意义的应用,是中档题.18、(1)证明见解析(2)【解析】

(1)要证明平面,只需证明,,即可求得答案;(2)先根据已知证明四边形为矩形,以为原点,为轴,为轴,为轴,建立坐标系,求得平面的法向量为,平面的法向量,设二面角的平面角为,,即可求得答案.【详解】(1)平面,平面,.,,.又,平面.(2)由(1)可知.在中,,..又,,四边形为矩形.以为原点,为轴,为轴,为轴,建立坐标系,如图:则:,,,,:,设平面的法向量为,即,令,则,由题平面,即平面的法向量为由二面角的平面角为锐角,设二面角的平面角为即二面角的正弦值为:.【点睛】本题主要考查了求证线面垂直和向量法求二面角,解题关键是掌握线面垂直判断定理和向量法求二面角的方法,考查了分析能力和计算能力,属于中档题.19、(1)(2)【解析】

(1)为假,则为真,求导,利用导函数研究函数有零点条件得的取值范围;(2)由为假,为真,知一真一假;分类讨论列不等式组可解.【详解】(1)依题意,为真,则无解,即无解;令,则,故当时,,单调递增,当,,单调递减,作出函数图象如下所示,观察可知,,即;(2)若为真,则,解得;由为假,为真,知一真一假;若真假,则实数满足,则;若假真,则实数满足,无解;综上所述,实数的取值范围为.【点睛】本题考查根据全(特)称命题的真假求参数的问题.其思路:与全称命题或特称命题真假有关的参数取值范围问题的本质是恒成立问题或有解问题.解决此类问题时,一般先利用等价转化思想将条件合理转化,得到关于参数的方程或不等式(组),再通过解方程或不等式(组)求出参数的值或范围.20、(1);(2)【解析】

(1)根据已知可得数列为等比数列,即可求解;(2)由(1)可得为等比数列,根据等比数列和等差数列的前项和公式,即可求解.【详解】(1)因为,所以,又所以数列为等比数列,且首项为,公比为.故(2)由(1)知,所以所以【点睛】本题考查等比数列的定义及通项公式、等差数列和等比数列的前项和,属于基础题.21、(1)见解析(2)的最小值为【解析】

(1)由题可得函数的定义域为,,当时,,令,可得;令,可得,所以函数在上单调递增,在上单调递减;当时,令,可得;令,可得或,所以函数在,上单调递增,在上单调递减;当时,恒成立,所以函数在上单调递增.综上,当时,函数在上单调递增,在

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论