湖北省黄冈市黄梅县第二中学2025届高二数学第一学期期末学业水平测试模拟试题含解析_第1页
湖北省黄冈市黄梅县第二中学2025届高二数学第一学期期末学业水平测试模拟试题含解析_第2页
湖北省黄冈市黄梅县第二中学2025届高二数学第一学期期末学业水平测试模拟试题含解析_第3页
湖北省黄冈市黄梅县第二中学2025届高二数学第一学期期末学业水平测试模拟试题含解析_第4页
湖北省黄冈市黄梅县第二中学2025届高二数学第一学期期末学业水平测试模拟试题含解析_第5页
已阅读5页,还剩13页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

湖北省黄冈市黄梅县第二中学2025届高二数学第一学期期末学业水平测试模拟试题注意事项1.考试结束后,请将本试卷和答题卡一并交回.2.答题前,请务必将自己的姓名、准考证号用0.5毫米黑色墨水的签字笔填写在试卷及答题卡的规定位置.3.请认真核对监考员在答题卡上所粘贴的条形码上的姓名、准考证号与本人是否相符.4.作答选择题,必须用2B铅笔将答题卡上对应选项的方框涂满、涂黑;如需改动,请用橡皮擦干净后,再选涂其他答案.作答非选择题,必须用05毫米黑色墨水的签字笔在答题卡上的指定位置作答,在其他位置作答一律无效.5.如需作图,须用2B铅笔绘、写清楚,线条、符号等须加黑、加粗.一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.如图是等轴双曲线形拱桥,现拱顶距离水面6米,水面宽米,若水面下降6米,则水面宽()A.米 B.米C.米 D.米2.已知为原点,点,以为直径的圆的方程为()A. B.C. D.3.若:,:,则为q的()A.充分必要条件 B.充分不必要条件C.必要不充分条件 D.既不充分又不必要条件4.设函数的导函数是,若,则()A. B.C. D.5.某班对期中成绩进行分析,利用随机数表法抽取样本时,先将60个同学的成绩按01,02,03,……,60进行编号,然后从随机数表第9行第5列的数1开始向右读,则选出的第6个个体是()(注:如下为随机数表的第8行和第9行)6301637859169555671998105071751286735833211234297864560782524507443815510013A.07 B.25C.42 D.526.设变量满足约束条件:,则的最小值()A. B.C. D.7.已知三个观测点,在的正北方向,相距,在的正东方向,相距.在某次爆炸点定位测试中,两个观测点同时听到爆炸声,观测点晚听到,已知声速为,则爆炸点与观测点的距离是()A. B.C. D.8.已知直线与椭圆:()相交于,两点,且线段的中点在直线:上,则椭圆的离心率为()A. B.C. D.9.已知数列的通项公式为,则“”是“数列为单调递增数列”的()A.充分而不必要条件 B.必要而不充分条件C.充分必要条件 D.既不充分也不必要条件10.在平面内,A,B是两个定点,C是动点,若,则点C的轨迹为()A.圆 B.椭圆C.抛物线 D.直线11.命题“存在,使得”的否定为()A.存在, B.对任意,C.对任意, D.对任意,12.与的等差中项是()A. B.C. D.二、填空题:本题共4小题,每小题5分,共20分。13.两个人射击,互相独立.已知甲射击一次中靶概率是0.6,乙射击一次中靶概率是0.3,现在两人各射击一次,中靶至少一次就算完成目标,则完成目标的概率为_____________14.已知函数,是其导函数,若曲线的一条切线为直线:,则的最小值为___________.15.双曲线的焦点在圆上,圆O与双曲线C的渐近线在第一、四象限分别交于P,Q两点满足(其中O是坐标原点),则的面积是_________16.中国的西气东输工程把西部地区的资源优势变为经济优势,实现了天然气能源需求与供给的东西部衔接,工程建设也加快了西部及沿线地区的经济发展.输气管道工程建设中,某段管道铺设要经过一处峡谷,峡谷内恰好有一处直角拐角,水平横向移动输气管经过此拐角,从宽为的峡谷拐入宽为的峡谷,如图所示,位于峡谷悬崖壁上两点,的连线恰好经过拐角内侧顶点(点,,在同一水平面内),设与较宽侧峡谷悬崖壁所成的角为,则的长为______(用表示).要使输气管顺利通过拐角,其长度不能低于______.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(12分)如图,在四棱锥P­ABCD中,PD⊥底面ABCD,AB∥CD,AB=2,CD=3,M为PC上一点,且PM=2MC.(1)求证:BM∥平面PAD;(2)若AD=2,PD=3,∠BAD=60°,求三棱锥P­ADM的体积18.(12分)直线经过两直线和的交点(1)若直线与直线平行,求直线的方程;(2)若点到直线的距离为,求直线的方程19.(12分)如图,矩形和菱形所在的平面相互垂直,,为的中点.(1)求证:平面;(2)若,求二面角的余弦值.20.(12分)已知是等差数列,是各项都为正数的等比数列,,再从①;②;③这三个条件中选择___________,___________两个作为已知.(1)求数列的通项公式;(2)求数列的前项和.21.(12分)已知抛物线C:的焦点为F,为抛物线C上一点,且(1)求抛物线C的方程:(2)若以点为圆心,为半径的圆与C的准线交于A,B两点,过A,B分别作准线的垂线交抛物线C于D,E两点,若,证明直线DE过定点22.(10分)如图1,在边长为2的菱形ABCD中,∠BAD=60°,将△BCD沿对角线BD折起到△BDC′的位置,如图2所示,并使得平面BDC′⊥平面ABD,E是BD的中点,FA⊥平面ABD,且FA=.图1图2(1)求平面FBC′与平面FBA夹角的余弦值;(2)在线段AD上是否存在一点M,使得⊥平面?若存在,求的值;若不存在,说明理由.

参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、B【解析】以双曲线的对称中心为原点,焦点所在对称轴为y轴建立直角坐标系,求出双曲线方程,数形结合即可求解.【详解】如图所示,以双曲线的对称中心为原点,焦点所在对称轴为y轴建立直角坐标系,设双曲线标准方程为:(a>0),则顶点,,将A点代入双曲线方程得,,当水面下降6米后,,代入双曲线方程得,,∴水面宽:米.故选:B.2、A【解析】求圆的圆心和半径,根据圆的标准方程即可求解﹒【详解】由题知圆心为,半径,∴圆方程为﹒故选:A﹒3、D【解析】根据充分条件和必要条件的定义即可得出答案.【详解】解:因为:,:,所以,所以为q的既不充分又不必要条件.故选:D.4、A【解析】求导后,令,可求得,再令可求得结果.【详解】因为,所以,所以,所以,所以,所以.故选:A【点睛】本题考查了导数的计算,考查了求导函数值,属于基础题.5、D【解析】从指定位置起依次读两位数码,超出编号的数删除.【详解】根据题意,从随机数表第9行第5列的数1开始向右读,依次选出的号码数是:12,34,29,56,07,52;所以第6个个体是52.故选:D.6、D【解析】如图作出可行域,知可行域的顶点是A(-2,2)、B()及C(-2,-2),平移,当经过A时,的最小值为-8,故选D.7、D【解析】根据题意作出示意图,然后结合余弦定理解三角形即可求出结果.【详解】设爆炸点为,由于两个观测点同时听到爆炸声,则点位于的垂直平分线上,又在的正东方向且观测点晚听到,则点位于的左侧,,,,设,则,解得,则爆炸点与观测点的距离为,故选:D.8、A【解析】将直线代入椭圆方程整理得关于的方程,运用韦达定理,求出中点坐标,再由条件得到,再由,,的关系和离心率公式,即可求出离心率.【详解】解:将直线代入椭圆方程得,,即,设,,,,则,即中点的横坐标是,纵坐标是,由于线段的中点在直线上,则,又,则,,即椭圆的离心率为.故选:A9、A【解析】根据充分条件和必要条件的定义,结合数列的单调性判断【详解】根据题意,已知数列的通项公式为,若数列为单调递增数列,则有(),所以,因为,所以,所以当时,数列为单调递增数列,而当数列为单调递增数列时,不一定成立,所以“”是“数列为单调递增数列”的充分而不必要条件,故选:A10、A【解析】首先建立平面直角坐标系,然后结合数量积定义求解其轨迹方程即可.【详解】设,以AB中点为坐标原点建立如图所示的平面直角坐标系,则:,设,可得:,从而:,结合题意可得:,整理可得:,即点C的轨迹是以AB中点为圆心,为半径的圆.故选:A.【点睛】本题主要考查平面向量及其数量积的坐标运算,轨迹方程的求解等知识,意在考查学生的转化能力和计算求解能力.11、D【解析】根据特称命题否定的方法求解,改变量词,否定结论.【详解】由题意可知命题“存在,使得”的否定为“对任意,”.故选:D.12、A【解析】代入等差中项公式即可解决.【详解】与的等差中项是故选:A二、填空题:本题共4小题,每小题5分,共20分。13、72【解析】利用独立事件的概率乘法公式和对立事件的概率公式可求得所求事件的概率.【详解】由题意可知,若甲、乙两个各射击1次,至少有一人命中目标的概率为.故答案为:14、【解析】设直线与曲线相切的切点为,借助导数的几何意义用表示出m,n即可作答.【详解】设直线与曲线相切的切点为,而,则直线的斜率,于是得,即,由得,而,于是得,即因,则,,当且仅当时取“=”,所以的最小值为.故答案为:【点睛】结论点睛:函数y=f(x)是区间D上的可导函数,则曲线y=f(x)在点处的切线方程为:.15、【解析】根据双曲线的焦点在圆上可求出的值,设线段与轴的交点坐标为,进而根据求出的坐标,代入圆中,求出的值,即可求出结果.【详解】因为双曲线的焦点在圆上,所以,设线段与轴的交点坐标为,结合双曲线与圆的对称性可知为线段的中点,又因为,即,且,则,又因为直线的方程为,所以,又因为在圆上,所以,又因为,则,所以,从而,故,故答案为:.16、①.②.【解析】(1)利用三角关系分别利用表示、即可求解;(2)利用导数求最小值的方法即可求解.【详解】过点分别作,,垂足分别为,,则,在中,,则,同理可得,所以.令,则,令,,得,即,由,解得,当时,;当时,,所以当时,取得极小值,也是最小值,则,故输气管的长度不能低于m.故答案为:;.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17、(1)证明见解析;(2).【解析】(1)过M作MN∥CD交PD于点N,证明四边形ABMN为平行四边形,即可证明BM∥平面PAD.(2)过B作AD的垂线,垂足为E,证明BE⊥平面PAD,在利用VP-ADM=VM-PAD求三棱锥P-ADM的体积.【详解】解:(1)证明:如图,过M作MN∥CD交PD于点N,连接AN.∵PM=2MC,∴MN=CD.又AB=CD,且AB∥CD∴AB∥MN∴四边形ABMN为平行四边形∴BM∥AN.又BM⊄平面PAD,AN⊂平面PAD∴BM∥平面PAD.(2)如图,过B作AD的垂线,垂足为E.∵PD⊥平面ABCD,BE⊂平面ABCD∴PD⊥BE.又AD⊂平面PAD,PD⊂平面PAD,AD∩PD=D∴BE⊥平面PAD.由(1)知,BM∥平面PAD∴点M到平面PAD的距离等于点B到平面PAD的距离,即BE.连接BD,在△ABD中,AB=AD=2,∠BAD=60°,∴BE=则三棱锥P­ADM的体积VP-ADM=VM-PAD=×S△PAD×BE=×3×=.18、(1)(2)或【解析】(1)由题意两立方程组,求两直线的交点的坐标,利用两直线平行的性质,用待定系数法求出的方程(2)分类讨论直线的斜率,利用点到直线的距离公式,用点斜式求直线的方程【小问1详解】解:由,解得,所以两直线和的交点为当直线与直线平行,设的方程为,把点代入求得,可得的方程为【小问2详解】解:斜率不存在时,直线方程为,满足点到直线的距离为5当的斜率存在时,设直限的方程为,即,则点到直线的距离为,求得,故的方程为,即综上,直线的方程为或19、(1)证明见解析;(2).【解析】(1)利用面面垂直和线面垂直的性质定理可证得;由菱形边长和角度的关系可证得;利用线面垂直的判定定理可证得结论;(2)以为坐标原点建立起空间直角坐标系,利用空间向量法可求得二面角的余弦值.详解】(1)平面平面,平面平面,且平面,平面,平面,,四边形为菱形且为中点,,又,,又,,平面,,平面.(2)以为坐标原点可建立如下图所示的空间直角坐标系,设,则,,,,,,则,,,设平面的法向量,则,令,则,,,设平面的法向量,则,令,则,,,,二面角为钝二面角,二面角的余弦值为.【点睛】本题考查立体几何中线面垂直关系的证明、空间向量法求解二面角的问题;涉及到面面垂直的性质定理、线面垂直的判定与性质定理的应用,属于常考题型.20、答案见解析【解析】(1)根据题设条件可得关于基本量的方程组,求解后可得的通项公式.(2)利用公式法可求数列的前项和.【详解】解:选择条件①和条件②(1)设等差数列的公差为,∴解得:,.∴,.(2)设等比数列的公比为,,∴解得,.设数列的前项和为,∴.选择条件①和条件③:(1)设等差数列的公差为,∴解得:,.∴.(2),设等比数列的公比为,.∴,解得,.设数列的前项和为,∴.选择条件②和条件③:(1)设等比数列的公比为,,∴,解得,,.设等差数列的公差为,∴,又,故.∴.(2)设数列的前项和为,由(1)可知.【点睛】方法点睛:等差数列或等比数列的处理有两类基本方法:(1)利用基本量即把数学问题转化为关于基本量的方程或方程组,再运用基本量解决与数列相关的问题;(2)利用数列的性质求解即通过观察下标的特征和数列和式的特征选择合适的数列性质处理数学问题21、(1);(2)证明见解析.【解析】(1)解方程和即得解;(2)设,,将与圆P的方程联立得到韦达定理,再写出直线的方程即得解.【小问1详解】解:因为抛物线C上一点,且,所以到抛物线C的准线的距离为2则,,则,所以,故抛物线C的方程为【小问2详解】

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论