辽宁省大连市达标名校2025届高一上数学期末综合测试试题含解析_第1页
辽宁省大连市达标名校2025届高一上数学期末综合测试试题含解析_第2页
辽宁省大连市达标名校2025届高一上数学期末综合测试试题含解析_第3页
辽宁省大连市达标名校2025届高一上数学期末综合测试试题含解析_第4页
辽宁省大连市达标名校2025届高一上数学期末综合测试试题含解析_第5页
已阅读5页,还剩8页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

辽宁省大连市达标名校2025届高一上数学期末综合测试试题注意事项1.考试结束后,请将本试卷和答题卡一并交回.2.答题前,请务必将自己的姓名、准考证号用0.5毫米黑色墨水的签字笔填写在试卷及答题卡的规定位置.3.请认真核对监考员在答题卡上所粘贴的条形码上的姓名、准考证号与本人是否相符.4.作答选择题,必须用2B铅笔将答题卡上对应选项的方框涂满、涂黑;如需改动,请用橡皮擦干净后,再选涂其他答案.作答非选择题,必须用05毫米黑色墨水的签字笔在答题卡上的指定位置作答,在其他位置作答一律无效.5.如需作图,须用2B铅笔绘、写清楚,线条、符号等须加黑、加粗.一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1.某食品的保鲜时间(单位:小时)与储存温度(单位:)满足函数关系(为自然对数的底数,为常数)若该食品在的保鲜时间是384小时,在的保鲜时间是24小时,则该食品在的保险时间是()小时A.6 B.12C.18 D.242.在平面直角坐标系中,角与角项点都在坐标原点,始边都与x轴的非负半轴重合,它们的终边关于y轴对称,若,则()A. B.C. D.3.已知函数的值域为,则实数a的取值范围是()A. B.C. D.4.设,,则A. B.C. D.5.圆台的一个底面周长是另一个底面周长的3倍,母线长为3,圆台的侧面积为84π,则圆台较小底面的半径为()A.7 B.6C.5 D.36.直线的斜率为,在y轴上的截距为b,则有()A. B.C. D.7.已知函数的零点,(),则()A. B.C. D.8.不等式对一切恒成立,则实数a的取值范围是()A. B.C. D.9.已知圆方程为,过该圆内一点的最长弦和最短弦分别为AC和BD,则四边形ABCD的面积是()A.4 B.C.6 D.10.已知角的顶点为坐标原点,始边为轴正半轴,终边经过点,则()A. B.C. D.二、填空题:本大题共6小题,每小题5分,共30分。11.函数(a>0且a≠1)的图象恒过点定,若角终边经过点,则___________.12.过两直线2x+y-8=0和x-2y+1=0的交点,且平行于直线4x-3y-7=0的直线方程为_______________.13.如图所示,正方体的棱长为1,B′C∩BC′=O,则AO与A′C′所成角的度数为________.14.无论实数k取何值,直线kx-y+2+2k=0恒过定点__15.在平面直角坐标系xOy中,已知圆有且仅有三个点到直线l:的距离为1,则实数c的取值集合是______16.将函数的图象上所有点的横坐标变为原来的2倍,纵坐标不变,再将图象向右平移个单位后,所得图象关于原点对称,则的值为______三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17.已知二次函数,且是函数的零点.(1)求解析式,并解不等式;(2)若,求函数的值域18.已知函数(,)(1)若关于的不等式的解集为,求不等式的解集;(2)若,,求关于的不等式的解集19.已知(1)求的值(2)求20.某产品生产厂家根据以往的生产销售经验得到下面有关生产销售的统计规律:每生产产品(百台),其总成本为(万元),其中固定成本为万元,并且每生产百台的生产成本为万元(总成本固定成本生产成本).销售收入(万元)满足,假定该产品产销平衡(即生产的产品都能卖掉),根据上述统计规律,请完成下列问题:(1)写出利润函数的解析式(利润销售收入总成本);(2)工厂生产多少台产品时,可使盈利最多?21.已知函数,实数且(1)设,判断函数在上的单调性,并说明理由;(2)设且时,的定义域和值域都是,求的最大值

参考答案一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1、A【解析】先阅读题意,再结合指数运算即可得解.【详解】解:由题意有,,则,即,则,即该食品在的保险时间是6小时,故选A.【点睛】本题考查了指数幂的运算,重点考查了解决实际问题的能力,属基础题.2、A【解析】利用终边相同的角和诱导公式求解.【详解】因为角与角的终边关于y轴对称,所以,所以,故选:A3、B【解析】令,要使已知函数的值域为,需值域包含,对系数分类讨论,结合二次函数图像,即可求解.【详解】解:∵函数的值域为,令,当时,,不合题意;当时,,此时,满足题意;当时,要使函数的值域为,则函数的值域包含,,解得,综上,实数的取值范围是.故选:B【点睛】关键点点睛:要使函数的值域为,需要作为真数的函数值域必须包含,对系数分类讨论,结合二次函数图像,即可求解.4、D【解析】利用对数运算法则即可得出【详解】,,,,则.故选D.【点睛】本题考查了对数的运算法则,考查了计算能力,属于基础题5、A【解析】设圆台上底面半径为,由圆台侧面积公式列出方程,求解即可得解.【详解】设圆台上底面半径为,由题意下底面半径为,母线长,所以,解得.故选:A.【点睛】本题考查了圆台侧面积公式的应用,属于基础题.6、A【解析】将直线方程化为斜截式,由此求得正确答案.【详解】,所以.故选:A7、D【解析】将函数化为,根据二次函数的性质函数的单调性,利用零点的存在性定理求出两个零点的分布,进而得出零点的取值范围,依次判断选项即可.【详解】由题意知,,则函数图象的对称轴为,所以函数在上单调递增,在上单调递减,又,,,,所以,因为,,所以,所以,故A错误;,故B错误;,故C错误;,故D正确.故选:D8、B【解析】当时,得到不等式恒成立;当时,结合二次函数的性质,列出不等式组,即可求解.【详解】由题意,不等式对一切恒成立,当时,即时,不等式恒成立,符合题意;当时,即时,要使得不等式对一切恒成立,则满足,解得,综上,实数a的取值范围是.故选:B.9、C【解析】由圆的方程可知圆心为,半径,则过圆内一点的最长弦为直径,最短弦为该点与圆心连线的垂线段,进而求解即可【详解】由题,圆心为,半径,过圆内一点的最长弦为直径,故;当时,弦长最短,因为,所以,因为在直径上,所以,所以四边形ABCD的面积是,故选:C【点睛】本题考查过圆内一点弦长的最值问题,考查两点间距离公式的应用,考查数形结合思想10、A【解析】利用任意角的三角函数的定义,即可求得的值【详解】角的顶点为坐标原点,始边为轴正半轴,终边过点.由三角函数的定义有:.故选:A二、填空题:本大题共6小题,每小题5分,共30分。11、【解析】利用指数函数的性质得出定点,由任意角三角函数的定义得出三角函数值,结合诱导公式代入求值即可【详解】,且故答案为:12、【解析】联立两直线方程求得交点坐标,求出平行于直线4x-3y-7=0的直线的斜率,由点斜式的直线方程,并化为一般式【详解】联立,解得∴两条直线2x+y-8=0和x-2y+1=0的交点为(3,2),∵直线4x-3y-7=0的斜率为,∴过两条直线2x+y-8=0和x-2y+1=0的交点,且平行于直线4x-3y-7=0的直线的方程为y-2=(x-3)即为4x-3y-6=0故答案为4x-3y-6=0【点睛】本题考查了直线的一般式方程与直线平行的关系,训练了二元一次方程组的解法,是基础题13、30°【解析】∵A′C′∥AC,∴AO与A′C′所成的角就是∠OAC(或其补角).∵OC⊂平面BB′C′C,AB⊥平面BB′C′C,∴OC⊥AB.又OC⊥OB,AB∩BO=B,∴OC⊥平面ABO.又AO⊂平面ABO,∴OC⊥OA.在Rt△AOC中,,∴∠OAC=30°.即AO与A′C′所成角度数为30°.点睛:平移线段法是求异面直线所成角的常用方法,其基本思路是通过平移直线,把异面问题化归为共面问题来解决,具体步骤如下:①平移:平移异面直线中的一条或两条,作出异面直线所成的角;②认定:证明作出的角就是所求异面直线所成的角;③计算:求该角的值,常利用解三角形;④取舍:由异面直线所成的角的取值范围是,当所作的角为钝角时,应取它的补角作为两条异面直线所成的角14、【解析】由kx-y+2+2k=0,得(x+2)k+(2-y)=0,由此能求出无论实数k取何值,直线kx-y+2+2k=0恒过定点【详解】∵kx-y+2+2k=0,∴(x+2)k+(2-y)=0,解方程组,得∴无论实数k取何值,直线kx-y+2+2k=0恒过定点故答案为:15、【解析】因为圆心到直线的距离为,所以由题意得考点:点到直线距离16、【解析】将函数的图象上所有点的横坐标变为原来的2倍,纵坐标不变得到,再将图象向右平移个单位,得到,即,其图象关于原点对称.∴,,又∴故答案为三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17、(1);;(2).【解析】(1)根据的零点求出,的值,得出函数的解析式,然后解二次不等式即可;(2)利用换元法,令,则,然后结合二次函数的图象及性质求出最值.【详解】(1)由题意得,解得所以当时,即,.(2)令,则,,当时,有最小值,当时,有最大值,故.【点睛】本题考查二次函数的解析式求解、值域问题以及一元二次不等式的解法,较简单.解答时只要抓住二次方程、二次函数、二次不等式之间的关系,则问题便可迎刃而解.18、(1)(2)当时,不等式的解集为;当时,不等式的解集为;当时,不等式的解集为【解析】(1)根据题意可得,且,3是方程的两个实数根,利用韦达定理得到方程组,求出,,进一步可得不等式等价于,即,最后求解不等式即可;(2)当时,时,不等式等价于,从而分类讨论,,三种情况即可求出不等式所对应的解集【小问1详解】解:的不等式的解集为,,且,3是方程的两个实数根,,,解得,,不等式等价于,即,故,解得或,所以该不等式的解集为;【小问2详解】解:当时,不等式等价于,即,又,所以不等式等价于,当,即时,不等式为,解得;当,即时,解不等式得或;当,即时,解不等式得或,综上,当时,不等式的解集为,当时,不等式的解集为,当时,不等式的解集为19、(1)(2)【解析】根据条件可解出与的值,再利用商数关系求解【小问1详解】,又,解得故【小问2详解】由诱导公式得20、(1)(2)当工厂生产百台时,可使赢利最大为万元【解析】(1)先求出,再根据求解;(2)先求出分段函数每一段的最大值,再比较即得解.【详解】解:(1)由题意得,(2)当时,函数递减,(万元)当时,函数,当时,有最大值为(万元)所以当工厂生产百台时,可使赢利最大为万元【点睛】本题主要考查函数的解析式的求法,考查分段函数的最值的求法,意在考查

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论