版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
江苏省南京市南京师大附中2025届高一数学第一学期期末预测试题注意事项:1.答卷前,考生务必将自己的姓名、准考证号填写在答题卡上。2.回答选择题时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其它答案标号。回答非选择题时,将答案写在答题卡上,写在本试卷上无效。3.考试结束后,将本试卷和答题卡一并交回。一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1.要得到函数的图象,只需将函数的图象A.向左平移个单位 B.向右平移个单位C.向左平移个单位 D.向右平移个单位2.已知函数是定义在R上的偶函数,且在区间单调递增.若实数a满足,则a的取值范围是A. B.C. D.3.在下列区间中,函数fxA.0,14C.12,4.函数的零点所在区间是A. B.C. D.5.《九章算术》中,称底面为矩形且有一侧棱垂直于底面的四棱锥为阳马,如图,某阳马的三视图如图所示,则该阳马的最长棱的长度为()A. B.C.2 D.6.已知函数是上的增函数(其中且),则实数的取值范围为()A. B.C. D.7.下列函数中,以为最小正周期且在区间上单调递减的是()A. B.C. D.8.某四棱锥的三视图如图所示,该四棱锥的表面积是A.32B.16+C.48D.9.已知函数的图象的对称轴为直线,则()A. B.C. D.10.已知函数,若不等式对任意实数x恒成立,则a的取值范围为()A. B.C. D.二、填空题:本大题共6小题,每小题5分,共30分。11.已知函数则___________.12.为了实现绿色发展,避免用电浪费,某城市对居民生活用电实行“阶梯电价”.计费方法如表所示,若某户居民某月交纳电费227元,则该月用电量为_______度.每户每月用电量电价不超过210度的部分0.5元/度超过210度但不超过400度的部分0.6元/度超过400度的部分0.8元/度13.已知且,则的最小值为______________14.对于定义在区间上的两个函数和,如果对任意的,均有不等式成立,则称函数与在上是“友好”的,否则称为“不友好”的(1)若,,则与在区间上是否“友好”;(2)现在有两个函数与,给定区间①若与在区间上都有意义,求的取值范围;②讨论函数与与在区间上是否“友好”15.化简________.16.若命题“是假命题”,则实数的取值范围是___________.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17.已知函数且.(1)求函数的定义域;(2)判断的奇偶性并予以证明;(3)若0<a<1,解关于x的不等式.18.已知函数,其中m为实数(1)求f(x)的定义域;(2)当时,求f(x)的值域;(3)求f(x)的最小值19.某企业为努力实现“碳中和”目标,计划从明年开始,通过替换清洁能源减少碳排放量,每年减少的碳排放量占上一年的碳排放量的比例均为,并预计年后碳排放量恰好减少为今年碳排放量的一半.(1)求的值;(2)若某一年的碳排放量为今年碳排放量的,按照计划至少再过多少年,碳排放量不超过今年碳排放量的?20.已知函数(1)求的最小正周期和对称中心;(2)填上面表格并用“五点法”画出在一个周期内的图象21.在三棱锥中,和是边长为等边三角形,,分别是的中点.(1)求证:平面;(2)求证:平面;(3)求三棱锥的体积.
参考答案一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1、C【解析】化函数解析式为,再由图象平移的概念可得【详解】解要得到函数的图象,只需将函数的图象向左平移个单位,即:故选C【点睛】本题考查函数图象平移变换,要注意的左右平移变换只针对自变量加减,即函数的图象向左平移个单位,得图象的解析式为2、C【解析】函数是定义在上的偶函数,∴,等价为),即.∵函数是定义在上的偶函数,且在区间单调递增,∴)等价为.即,∴,解得,故选项为C考点:(1)函数的奇偶性与单调性;(2)对数不等式.【思路点晴】本题主要考查对数的基本运算以及函数奇偶性和单调性的应用,综合考查函数性质的综合应用根据函数的奇偶数和单调性之间的关系,综合性较强.由偶函数结合对数的运算法则得:,即,结合单调性得:将不等式进行等价转化即可得到结论.3、C【解析】利用零点存在定理即可判断.【详解】函数fx=e因为函数y=ex,y=2x-3均为增函数,所以fx又f1=ef12=由零点存在定理可得:fx的零点所在的区间为1故选:C4、B【解析】通过计算,判断出零点所在的区间.【详解】由于,,,故零点在区间,故选B.【点睛】本小题主要考查零点的存在性定理的应用,考查函数的零点问题,属于基础题.5、B【解析】根据三视图画出原图,从而计算出最长的棱长.【详解】由三视图可知,该几何体如下图所示,平面,,则所以最长的棱长为.故选:B6、D【解析】利用对数函数、一次函数的性质判断的初步取值范围,再由整体的单调性建立不等式,构造函数,利用函数的单调性求解不等式,从求得的取值范围.【详解】由题意必有,可得,且,整理为.令由换底公式有,由函数为增函数,可得函数为增函数,注意到,所以由,得,即,实数a的取值范围为故选:D.7、B【解析】根据正弦、余弦、正切函数的周期性和单调性逐一判断即可得出答案.【详解】解:对于A,函数的最小正周期为,不符合题意;对于B,函数的最小正周期为,且在区间上单调递减,符合题意;对于C,函数的最小正周期为,且在区间上单调递增,不符合题意;对于D,函数的最小正周期为,不符合题意.故选:B.8、B【解析】由题意知原几何体是正四棱锥,其中正四棱锥的高为2,底面是一个边长为4的正方形,过顶点向底面做垂线,垂线段长是2,过底面的中心向长度是4的边做垂线,连接垂足与顶点,得到直角三角形,得到斜高是2,所以四个侧面积是,底面面积为,所以该四棱锥的表面积是16+,故选B点评:本题考查由三视图求几何体的表面积,做此题型的关键是正确还原几何体及几何体的棱的长度.9、A【解析】根据二次函数的图像的开口向上,对称轴为,可得,且函数在上递增,再根据函数的对称性以及单调性即可求解.【详解】二次函数的图像的开口向上,对称轴为,且函数在上递增,根据二次函数的对称性可知,又,所以,故选:A【点睛】本题考查了二次函数的单调性以及对称性比较函数值的大小,属于基础题.10、C【解析】先分析出的奇偶性,再得出的单调性,由单调性结合奇偶性解不等式得到,再利用均值不等式可得答案.【详解】的定义域满足,由,所以在上恒成立.所以的定义域为则所以,即为奇函数.设,由上可知为奇函数.当时,,均为增函数,则在上为增函数.所以在上为增函数.又为奇函数,则在上为增函数,且所以在上为增函数.所以在上为增函数.由,即所以对任意实数x恒成立即,由当且仅当,即时得到等号.所以故选:C二、填空题:本大题共6小题,每小题5分,共30分。11、5【解析】先求出,再根据该值所处范围代入相应的解析式中计算结果.【详解】由题意可得,则,故答案为:5.12、410【解析】由题意列出电费(元)关于用电量(度)的函数,令,代入运算即可得解.【详解】由题意,电费(元)关于用电量(度)的函数为:,即,当时,,若,,则,解得.故答案为:410.13、9【解析】因为且,所以取得等号,故函数的最小值为9.,答案为9.14、(1)是;(2)①;②见解析【解析】(1)按照定义,只需判断在区间上是否恒成立;(2)①由题意解不等式组即可;②假设存在实数,使得与与在区间上是“友好”的,即,即,只需求出函数在区间上的最值,解不等式组即可.【详解】(1)由已知,,因为时,,所以恒成立,故与在区间上是“友好”的.(2)①与在区间上都有意义,则必须满足,解得,又且,所以的取值范围为.②假设存在实数,使得与与在区间上是“友好”的,则,即,因为,则,,所以在的右侧,又复合函数的单调性可得在区间上为减函数,从而,,所以,解得,所以当时,与与在区间上是“友好”的;当时,与与在区间上是“不友好”的.【点睛】本题考查函数的新定义问题,主要涉及到不等式恒成立的问题,考查学生转化与化归的思想、数学运算求解能力,是一道有一定难度的题.15、【解析】观察到,故可以考虑直接用辅助角公式进行运算.【详解】故答案为:.16、####【解析】等价于,解即得解.【详解】解:因为命题“是假命题”,所以,所以.故答案为:三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17、(1)(2)奇函数.(3)【解析】(1)根据对数的真数应大于0,列出不等式组可得函数的定义域;(2)函数为奇函数,利用可得结论;(3)不等式等价于,利用对数函数的单调性得,解不等式即可.试题解析:(1)由题得,所以函数的定义域为;(2)函数为奇函数.证明:由(1)知函数的定义域关于原点对称,且,所以函数为奇函数;(3)由可得,即,又0<a<1,所以,故,即,解得,所以原不等式的解集为.点睛:本题主要考查了对数函数的定义域,函数奇偶性的证明,以及指数函数、对数函数的不等式解法,注重对基础的考查;要使对数函数有意义,需满足真数部分大于0,函数奇偶性的证明即判断和的关系,而对于指、对数类型的不等式主要是依据函数的单调性求解.18、(1)(2)[2,2](3)当时,f(x)的最小值为2;当时,f(x)的最小值为【解析】(1)根据函数解析式列出相应的不等式组,即可求得函数定义域;(2)令,采用两边平方的方法,即可求得答案;(3)仿(2),令,可得,从而将变为关于t的二次函数,然后根据在给定区间上的二次函数的最值问题求解方法,分类讨论求得答案.【小问1详解】由解得所以f(x)的定义域为【小问2详解】当时,设,则当时,取得最大值8;当或时,取得最小值4所以的取值范围是[4,8]所以f(x)的值城为[2,2]【小问3详解】设,由(2)知,,且,则令,,若,,此时的最小值为;若,当时,在[2,2上单调递增,此时的最小值为;当,即时,,此时的最小值为;当,即时,,此时的最小值为所以,当时,f(x)的最小值为2;当时,f(x)的最小值为19、(1);(2)年.【解析】(1)设今年碳排放量为,则由题意得,从而可求出的值;(2)设再过年碳排放量不超过今年碳排放量的,则,再把代入解关于的不等式即可得答案【详解】解:设今年碳排放量为.(1)由题意得,所以,得.(2)设再过年碳排放量不超过今年碳排放量,则,将代入得,即,得.故至少再过年,碳排放量不超过今年碳排放量的.20、(1),它的对称中心为,(2)答案见解析.【解析】(1):根据二倍角与辅助角公式化简函数为一名一角即可求解;(2):根据五点法定义列表作图即可【小问1详解】∴函数的最小正周期;令,,解得,,可得它的对称中心为,【小问2详解】x0010021、(1)见解析(2)见解析(3).【解析】由三角形中位线定理,得出,结合线面平行的判定定理,可得
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 企业运营资金管理方案
- 名著《童年》读后感400字
- 汽车装调工、维修工理论2023版复习测试卷附答案
- 2024安全管理技术竞赛(单选)练习试卷附答案
- 专题07 弧长、扇形面积和圆锥的侧面积(4个考点七大类型)(题型专练)(原卷版)
- 关于水浒传歇后语
- 语文统编版(2024)一年级上册语文园地三 课件
- 第1章 生产与运营管理导论课件
- 初中物理《光的反射》说课稿
- 5年中考3年模拟试卷初中道德与法治七年级下册01第1课时憧憬美好集体
- (正式版)HGT 22820-2024 化工安全仪表系统工程设计规范
- 《中华民族共同体概论》考试复习题库(含答案)
- 《德意电子商务实验室》专业版
- 北师大版数学六年级上册《比的应用》课件 (2)
- 办公软件培训课件
- 方阵问题教学设计_北京小学大兴分校_臧燕萍
- 有机波普第四章质谱
- QC080000-2017标准讲解培训教材
- 五年级人自然社会全册教案
- 高中世界地理区域地理填图
- (完整版)沉井和顶管监理细则
评论
0/150
提交评论