新高考一轮复习讲义第03讲相等关系与不等关系(原卷版+解析)_第1页
新高考一轮复习讲义第03讲相等关系与不等关系(原卷版+解析)_第2页
新高考一轮复习讲义第03讲相等关系与不等关系(原卷版+解析)_第3页
新高考一轮复习讲义第03讲相等关系与不等关系(原卷版+解析)_第4页
新高考一轮复习讲义第03讲相等关系与不等关系(原卷版+解析)_第5页
已阅读5页,还剩9页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

试卷第=page11页,共=sectionpages33页第3讲相等关系与不等关系学校:___________姓名:___________班级:___________考号:___________【基础巩固】1.(2022·重庆八中高三阶段练习)若a,b都是非零实数,满足,且,则下列不等式一定成立的是(

)A. B. C. D.2.(2022·北京海淀·二模)已知,且,则(

)A. B.C. D.3.(2022·山东日照·二模)若a,b,c为实数,且,,则下列不等关系一定成立的是(

)A. B. C. D.4.(2022·北京密云·高三期末)已知,且,,则下列不等式中一定成立的是(

)A. B.C. D.5.(2022·重庆·二模)若非零实数a,b满足,则下列不等式一定成立的是(

)A. B.C. D.6.(2022·全国·高三专题练习)已知,,则的取值范围是(

)A. B.C. D.7.(2021·河北·石家庄二中高三阶段练习)已知,,则的取值范围是(

)A. B. C. D.8.(2022·山东聊城·高三期中)设,则有(

)A.B.C.D.9.(多选)(2022·湖北·荆州中学模拟预测)已知实数,,满足,则下列说法正确的是(

)A. B.C. D.的最小值为410.(多选)(2022·河北·石家庄二中模拟预测)已知,定义分别为,,则下列叙述正确的是(

)A. B.C.是四个数中最小者 D.是四个数中最大者11.(多选)(2022·广东佛山·模拟预测)下列命题为真命题的是(

)A.若,,则 B.若,,则C.若,则 D.若,,则12.(2022·重庆巴蜀中学高三阶段练习)下列命题正确的是(

)A.若,则 B.若且,则C.若,则 D.若,则13.(2022·全国·高三专题练习)已知,,且,记,,,则、、的大小关系为.(用“”连接)14.(2022·全国·高三专题练习)已知﹣1<2s+t<2,3<s﹣t<4,则5s+t的取值范围__________.15.(2022·浙江·高三专题练习)已知,则_______.(用“>”或“<”填空)16.(2022·浙江·高三专题练习)杯中有浓度为的盐水克,杯中有浓度为的盐水克,其中杯中的盐水更咸一些.若将、两杯盐水混合在一起,其咸淡的程度可用不等式表示为_____.17.(2022·全国·高三专题练习)(1)若bc-ad≥0,bd>0,求证:≤;(2)已知c>a>b>0,求证:18.(2022·全国·高三专题练习)已知,若,,求的取值范围.【素养提升】1.(2022·湖南·长沙一中高三阶段练习)若,,则下列选项中正确的是(

)A. B.C. D.2.(2018·浙江·高三学业考试)已知,是正实数,则下列式子中能使恒成立的是(

)A. B. C. D.3.(2022·全国·高三专题练习)长沙市为了支援边远山区的教育事业.组织了一支由13名教师组成的队伍下乡支教,记者采访队长时询问这个团队的构成情况,队长回答:“有中学高级教师,中学教师不多于小学教师,小学高级教师少于中学中级教师,小学中级教师少于小学高级教师,支教队伍的职称只有小学中级、小学高级、中学中级、中学高级,无论是否把我计算在内,以上条件都成立"由队长的叙述可以推测出他的职称是______.4.(2022·全国·高三专题练习)已知均为大于0的实数,给出下列五个论断:①,②,③,④,⑤.以其中的两个论断为条件,余下的论断中选择一个为结论,请你写出一个正确的命题___________.5.(2022·江苏南通·高三阶段练习)设a>0,b>0,a≤2b≤2a+b,则的取值范围为_______.试卷第=page11页,共=sectionpages33页第3讲相等关系与不等关系学校:___________姓名:___________班级:___________考号:___________【基础巩固】1.(2022·重庆八中高三阶段练习)若a,b都是非零实数,满足,且,则下列不等式一定成立的是(

)A. B. C. D.【答案】C【解析】解:因为且,所以,,所以,故C正确,D错误;若,则,又,则,若,则,又,无法判断与的大小关系,故A、B错误;故选:C2.(2022·北京海淀·二模)已知,且,则(

)A. B.C. D.【答案】B【解析】对于A,令,显然,错误;对于B,,又不能同时成立,故,正确;对于C,取,则,错误;对于D,取,则,错误.故选:B.3.(2022·山东日照·二模)若a,b,c为实数,且,,则下列不等关系一定成立的是(

)A. B. C. D.【答案】A【解析】对于A选项,由不等式的基本性质知,不等式的两边都加上(或减去)同一个数或同一个整式,不等号方向不变,则,A选项正确;对于B选项,由不等式的基本性质知,不等式的两边都乘以(或除以)同一个负数,不等号方向改变,若,,则,B选项错误;对于C选项,由不等式的基本性质知,不等式的两边都乘以(或除以)同一个正数,不等号方向不变,,,C选项错误;对于D选项,因为,,所以无法判断与大小,D选项错误.4.(2022·北京密云·高三期末)已知,且,,则下列不等式中一定成立的是(

)A. B.C. D.【答案】D【解析】当时,,而,,而无意义,故ABC错误;因为,所以,D正确.故选:D5.(2022·重庆·二模)若非零实数a,b满足,则下列不等式一定成立的是(

)A. B.C. D.【答案】D【解析】对于A中,由,因为,可得,当不确定,所以A错误;对于B中,只有当不相等时,才有成立,所以B错误;对于C中,例如,此时满足,但,所以C错误;对于D中,由不等式的基本性质,当时,可得成立,所以D正确.故选:D.6.(2022·全国·高三专题练习)已知,,则的取值范围是(

)A. B.C. D.【答案】A【解析】因为,所以,由,得.故选:A.7.(2021·河北·石家庄二中高三阶段练习)已知,,则的取值范围是(

)A. B. C. D.【答案】A【解析】设,所以,解得:,,因为,,所以,故选:A.8.(2022·山东聊城·高三期中)设,则有(

)A.B.C.D.【答案】B【解析】由,;由,,,故选:B.9.(多选)(2022·湖北·荆州中学模拟预测)已知实数,,满足,则下列说法正确的是(

)A. B.C. D.的最小值为4【答案】ABC【解析】由题,所以有,故A正确;,故B正确;,故C正确;,当且仅当即时取等,又因为,所以,即无最小值,故D错误.故选:ABC.10.(多选)(2022·河北·石家庄二中模拟预测)已知,定义分别为,,则下列叙述正确的是(

)A. B.C.是四个数中最小者 D.是四个数中最大者【答案】AC【解析】因为,所以,则,即,又,,,又,则;又,,即,

,当时,,当时,,故选:AC11.(多选)(2022·广东佛山·模拟预测)下列命题为真命题的是(

)A.若,,则 B.若,,则C.若,则 D.若,,则【答案】AD【解析】A.由不等式的性质可知同向不等式相加,不等式方向不变,故正确;B.当时,,故错误;C.当时,故错误;D.,因为,,,所以,故正确;故选:AD12.(2022·重庆巴蜀中学高三阶段练习)下列命题正确的是(

)A.若,则 B.若且,则C.若,则 D.若,则【答案】BD【解析】对选项A:可取,,,则满足,但此时,所以选项A错误;对选项B:因为,所以若,则;若,则;所以选项B正确;对选项C:若,则,所以选项C错误;对选项D:若,所以;又因为,所以由同向同正可乘性得:,所以,所以选项D正确,故选:BD.13.(2022·全国·高三专题练习)已知,,且,记,,,则、、的大小关系为.(用“”连接)【答案】【解析】因为,,且,可得,所以,又由,所以.综上可得:.故答案为:.14.(2022·全国·高三专题练习)已知﹣1<2s+t<2,3<s﹣t<4,则5s+t的取值范围__________.【答案】(1,8)【解析】设5s+t=m(2s+t)+n(s﹣t),则5s+t=(2m+n)s+(m﹣n)t,则,解得,则5s+t=2(2s+t)+(s﹣t),∵﹣1<2s+t<2,∴﹣2<2(2s+t)<4,又∵3<s﹣t<4,∴1<2(2s+t)+(s﹣t)<8,即1<5s+t<8,∴5s+t的取值范围是(1,8).故答案为:(1,8).15.(2022·浙江·高三专题练习)已知,则_______.(用“>”或“<”填空)【答案】>【解析】因为,又,,所以,所以,故答案为:>.16.(2022·浙江·高三专题练习)杯中有浓度为的盐水克,杯中有浓度为的盐水克,其中杯中的盐水更咸一些.若将、两杯盐水混合在一起,其咸淡的程度可用不等式表示为_____.【答案】【解析】由题意,将、两杯盐水混合再一起后浓度为,,,杯中的盐水更咸一些,,,故答案为:.17.(2022·全国·高三专题练习)(1)若bc-ad≥0,bd>0,求证:≤;(2)已知c>a>b>0,求证:【解】证明:(1)∵bc≥ad,bd>0,∴,∴+1≥+1,∴≤.(2)∵c>a>b>0,∴c-a>0,c-b>0.∵a>b>0,∴又∵c>0,∴,∴,又c-a>0,c-b>0,∴.18.(2022·全国·高三专题练习)已知,若,,求的取值范围.【解】由题意,得,解得,,因此,,把和的取值范围代入,得.∴的取值范围是.【素养提升】1.(2022·湖南·长沙一中高三阶段练习)若,,则下列选项中正确的是(

)A. B.C. D.【答案】C【解析】解:对于A选项,由于,,故由对数的定义得,,所以,所以,故错误;对于B选项,令,则,此时,故错误;对于C选项,因为,在单位圆中,内接正边形的面积小于内接正边形的面积,所以,故正确;对于D选项,由于,故错误.故选:C2.(2018·浙江·高三学业考试)已知,是正实数,则下列式子中能使恒成立的是(

)A. B. C. D.【答案】B【解析】对于A,取,该不等式成立,但不满足;对于C,该不等式等价于,取,,该不等式成立,但不满足;对于D,该不等式等价于,取,,该不等式成立,但不满足;下面证明B法一不等式等价于,而.函数在上单增,故.法二若,则,故,矛盾.故选:B3.(2022·全国·高三专题练习)长沙市为了支援边远山区的教育事业.组织了一支由13名教师组成的队伍下乡支教,记者采访队长时询问这个团队的构成情况,队长回答:“有中学高级教师,中学教师不多于小学教师,小学高级教师少于中学中级教师,小学中级教师少于小学高级教师,支教队伍的职称只有小学中级、小学高级、中学中级、中学高级,无论是否把我计算在内,以上条件都成立"由队长的叙述可以推测出他的职称是______.【答案】小学中级【解析】设小学中级、小学高级、中学中级、中学高级教师的人数分别为,,,,则,,,,,∴,∴,.若,则,∵,∴,,,.若,则,∵,∴.∵,∴,,与矛盾.队长为小学中级教师时,去掉队长,则,,,,满足,,,;队长为小学高级教师时,去掉队长,则,,,,不满足;队长为中学中级教师时,去掉队长,则,,,,不满足;队长为中学高级教师时,去掉队长,则,,,,不满足.综上,队长为小学中级教师.故答案为:小学中级

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论