版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
学校________________班级____________姓名____________考场____________准考证号学校________________班级____________姓名____________考场____________准考证号…………密…………封…………线…………内…………不…………要…………答…………题…………第1页,共7页江苏省扬州市部分区、县2025届数学九上开学调研模拟试题题号一二三四五总分得分批阅人A卷(100分)一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)1、(4分)已知关于x的一元二次方程x2-x+k=0的一个根是2,则k的值是()A.-2 B.2 C.1 D.12、(4分)方程的左边配成完全平方后所得方程为()A. B. C. D.3、(4分)甲、乙两人从相距24km的A、B两地沿着同一条公路相向而行,如果甲的速度是乙的速度的两倍,如果要保证在2小时以内相遇,则甲的速度()A.小于8km/h B.大于8km/h C.小于4km/h D.大于4km/h4、(4分)若x<y,则下列式子不成立的是()A.x-1<y-1 B. C.x+3<y+3 D.-2x<-2y5、(4分)若二次根式有意义,则x的取值范围是()A.x> B.x≥ C.x≤ D.x≤56、(4分)如图,在平面直角坐标系xOy中,点P(1,0).点P第1次向上跳动1个单位至点P1(1,1),紧接着第2次向左跳动2个单位至点P2(﹣1,1),第3次向上跳动1个单位至点P3,第4次向右跳动3个单位至点P4,第5次又向上跳动1个单位至点P5,第6次向左跳动4个单位至点P6,….照此规律,点P第100次跳动至点P100的坐标是()A.(﹣26,50) B.(﹣25,50)C.(26,50) D.(25,50)7、(4分)直线与直线在同一平面直角坐标系中的图象如图所示,则关于x的不等式的解为()A.x>-1 B.x<-1 C.x<-2 D.无法确定8、(4分)如图,在矩形ABCD中,AB=8,AD=6,过点D作直线m∥AC,点E、F是直线m上两个动点,在运动过程中EF∥AC且EF=AC,四边形ACFE的面积是()A.48 B.40 C.24 D.30二、填空题(本大题共5个小题,每小题4分,共20分)9、(4分)将抛物线先向左平移个单位,再向下平移个单位,所得抛物线的解析式为______.10、(4分)如图,在△ABC中,点D、E分别在AB、AC上,∠ADE=∠C,如果AE=4cm,△ACE的面积是4cm2,四边形BCED的面积是5cm2,那么AB的长是.11、(4分)如图,四边形ABCD是菱形,AC=24,BD=10,DH⊥AB于点H,则线段BH的长为______.12、(4分)在直角坐标系中,点P(﹣2,3)到原点的距离是.13、(4分)如图,点A的坐标为2,2,则线段AO的长度为_________.三、解答题(本大题共5个小题,共48分)14、(12分)把下列各式分解因式:(1)1a(x﹣y)﹣6b(y﹣x);(1)(a1+4)1﹣16a1.15、(8分)如图,在平行四边形ABCD中,过点A作对角线BD的垂线,垂足为E,点F为AD的中点,连接FE并延长交BC于点G.(1)求证:;(2)若,,,求BG的长.16、(8分)计算:2b﹣(4a+)(a>0,b>0).17、(10分)温度的变化是人们经常谈论的话题,请根据下图解决下列问题.(1)这一天的最高温度是多少?是在几时到达的?(2)这一天的温差是多少?从最低温度到最高温度经过多长时间?(3)在什么时间范围内温度在上升?在什么时间范围内温度在下降?18、(10分)如图,在中,点、分别在边、上,且AE=CF,连接,请只用无刻度的直尺画出线段的中点,并说明这样画的理由.B卷(50分)一、填空题(本大题共5个小题,每小题4分,共20分)19、(4分)计算:3xy2÷=_______.20、(4分)如图,在菱形ABCD中,E是AB的中点,且DE⊥AB,AB=10,则∠ABC=_____,对角线AC的长为_____.21、(4分)一次函数,当时,,则_________.22、(4分)如果关于x的方程有实数根,则m的取值范围是_______________.23、(4分)计算:=______.二、解答题(本大题共3个小题,共30分)24、(8分)已知:将矩形绕点逆时针旋转得到矩形.(1)如图,当点在上时,求证:(2)当旋转角的度数为多少时,?(3)若,请直接写出在旋转过程中的面积的最大值.25、(10分)如图1,已知∠DAC=90°,△ABC是等边三角形,点P为射线AD上任意一点(点P与点A不重合),连结CP,将线段CP绕点C顺时针旋转60°得到线段CQ,连结QB并延长交直线AD于点E.(1)如图1,猜想∠QEP=°;(2)如图2,3,若当∠DAC是锐角或钝角时,其它条件不变,猜想∠QEP的度数,选取一种情况加以证明;(3)如图3,若∠DAC=135°,∠ACP=15°,且AC=4,求BQ的长.26、(12分)为了从甲、乙两名学生中选拨一人参加射击比赛,对他们的射击水平进行了测验,两人在相同条件下各射靶6次,命中的环数如下:甲:7,8,6,10,10,7乙:7,7,8,8,10,8,如果你是教练你会选拨谁参加比赛?为什么?
参考答案与详细解析一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)1、A【解析】
知道方程的一根,把x=2代入方程中,即可求出未知量k.【详解】解:将x=2代入一元二次方程x2-x+k=0,
可得:4-2+k=0,
解得k=-2,
故选:A.本题主要考查了一元二次方程的根的定义,把求未知系数的问题转化为解方程的问题,是待定系数法的应用.2、A【解析】
根据配方法的步骤对方程进行配方即可.【详解】解:移项得:x2+6x=5,
配方可得:x2+6x+9=5+9,
即(x+3)2=14,
故选:A.本题考查用配方法解一元二次方程.熟练掌握用配方法解一元二次方程的具体步骤是解决此题的关键.3、B【解析】设甲的速度为x千米/小时,则乙的速度为千米/小时,由题意可得,2(x+)>24,解得x>8,所以要保证在2小时以内相遇,则甲的速度要大于8km/h,故选B.4、D【解析】
根据不等式的性质逐项分析即可.【详解】A.∵x<y,∴x-1<y-1,故成立;B.∵x<y,∴,故成立;C.∵x<y,∴x+3<y+3,故成立;D.∵x<y,∴-2x>-2y,故不成立;故选D.故选:D.本题考查了不等式的性质:①把不等式的两边都加(或减去)同一个整式,不等号的方向不变;②不等式两边都乘(或除以)同一个正数,不等号的方向不变;③不等式两边都乘(或除以)同一个负数,不等号的方向改变.5、B【解析】
根据二次根式有意义的条件列出不等式,解不等式即可.【详解】解:由题意得,5x﹣1≥0,解得,x≥,故选B.本题考查的是二次根式有意义的条件,掌握二次根式中的被开方数是非负数是解题的关键.6、C【解析】
解决本题的关键是分析出题目的规律,以奇数开头的相邻两个坐标的纵坐标是相同的,所以第100次跳动后,纵坐标为,其中4的倍数的跳动都在轴的右侧,那么第100次跳动得到的横坐标也在轴的右侧.横坐标为,横坐标为,横坐标为,以此类推可得到的横坐标.【详解】解:经过观察可得:和的纵坐标均为,和的纵坐标均为,和的纵坐标均为,因此可以推知和的纵坐标均为;其中4的倍数的跳动都在轴的右侧,那么第100次跳动得到的横坐标也在轴的右侧.横坐标为,横坐标为,横坐标为,以此类推可得到:的横坐标为(是4的倍数).故点的横坐标为:,纵坐标为:,点第100次跳动至点的坐标为.故选:.本题考查规律型:点的坐标,解题的关键是分析出题目的规律,找出题目中点的坐标的规律,属于中考常考题型.7、B【解析】
如图,直线l1:y1=k1x+b与直线l2:y2=k2x在同一平面直角坐标系中的图像如图所示,则求关于x的不等式k1x+b>k2x的解集就是求:能使函数y1=k1x+b的图象在函数y2=k2x的上方的自变量的取值范围.【详解】解:能使函数y1=k1x+b的图象在函数y2=k2x的上方的自变量的取值范围是x<-1.故关于x的不等式k1x+b>k2x的解集为:x<-1.故选B.8、A【解析】
根据题意在运动过程中EF∥AC且EF=AC,所以可得四边形ACFE为平行四边形,因此计算面积即可.【详解】根据在运动过程中EF∥AC且EF=AC四边形ACFE为平行四边形过D作DM垂直AC于点M根据等面积法,在中可得四边形ACFE为平行四边形的高为故选A本题主要考查平行四边形的性质,关键在于计算平行四边形的高.二、填空题(本大题共5个小题,每小题4分,共20分)9、【解析】
二次函数图象平移规律:“上加下减,左加右减”,据此求解即可.【详解】将抛物线先向左平移个单位,再向下平移个单位后的解析式为:,故答案为.10、6cm.【解析】试题分析:由∠ADE=∠C,∠A是公共角,根据有两角对应相等的三角形相似,即可证得△ADE∽△ACB,又由相似三角形面积的比等于相似比的平方,即可得,然后由AE=2,△ADE的面积为4,四边形BCDE的面积为5,即可求得AB的长为6cm.故答案为6cm.考点:相似三角形的判定与性质.11、【解析】解:∵四边形ABCD是菱形,AC=24,BD=10,∴AO=12,OD=5,AC⊥BD,∴AD=AB==13,∵DH⊥AB,∴AO×BD=DH×AB,∴12×10=13×DH,∴DH=,∴BH==.故答案为:.12、.【解析】试题分析:在平面直角坐标系中找出P点,过P作PE垂直于x轴,连接OP,由P的坐标得出PE及OE的长,在直角三角形OPE中,利用勾股定理求出OP的长,即为P到原点的距离.如图,过P作PE⊥x轴,连接OP,由P(﹣2,3),可得PE=3,OE=2,在Rt△OPE中,根据勾股定理得OP2=PE2+OE2,代入数据即可求得OP=,即点P在原点的距离为.考点:勾股定理;点的坐标.13、2【解析】
根据勾股定理计算即可.【详解】解:∵点A坐标为(2,2),∴AO=22故答案为:22本题考查了勾股定理的运用和点到坐标轴的距离:①到x轴的距离与纵坐标有关,到y轴的距离与横坐标有关;②距离都是非负数,而坐标可以是负数,在由距离求坐标时,需要加上恰当的符号.三、解答题(本大题共5个小题,共48分)14、(1)1(x﹣y)(a+3b);(1)(a+1)1(a﹣1)1.【解析】
(1)两次运用提公因式法,即可得到结果;(1)先运用平方差公式,再运用完全平方公式,即可得到结果.【详解】(1)1a(x﹣y)﹣6b(y﹣x)=1a(x﹣y)+6b(x﹣y)=1(x﹣y)(a+3b);(1)(a1+4)1﹣16a1=(a1+4+4a)(a1+4﹣4a)=(a+1)1(a﹣1)1.本题主要考查了提公因式法以及公式法的综合运用,解题时注意:有公因式时,先提出公因式,再运用公式法进行因式分解.15、(1)见解析;(2).【解析】
(1)由直角三角形斜边中线定理,得到EF=DF,然后得到∠FED=∠FDE,利用平行线的性质和对顶角相等,得到∠EBG=∠BEG,从而得到BG=GE.(2)由平行四边形和平行线的性质,可以得到△ABE为等腰直角三角形,根据计算得AE=BE=3,又AF=EF=3,可得△AEF为等边三角形,则∠EAD=60°,从而得到∠EBG=∠ADE=30°,进而得到BG的长度.【详解】解:(1)证明:∵∴∵点F是AD的中点∴∴∵四边形ABCD是平行四边形∴∴∵∴∴(2)∵四边形ABCD是平行四边形∴,∴∵∴∴∴由(1)可得,∴是等边三角形∴∴∴;本题考查了等腰三角形判定和性质,直角三角形斜边中线定理,以及含30°角的直角三角形的性质,解题的关键是熟练掌握含30°角的直角三角形的角度和边长的计算问题.16、﹣5.【解析】分析:按照二次根式的相关运算法则进行化简计算即可.详解:原式=2b×﹣4a×﹣3=2﹣4﹣3=﹣5.点睛:熟记“二次根式的相关运算性质、法则”是正确解答本题的关键.17、(1)这一天的最高温度是37℃,是在15时到达的;(2)温差为,经过的时间为时;(3)从3时到15时温度在上升,在0时到3时、15时到24时温度在下降.【解析】
(1)观察图象,可知最高温度为37℃,时间为15时;(2)由(1)中得出的最高温度-最低温度即可求出温差,也可求得经过的时间;(3)观察图象可求解.【详解】解:(1)根据图像可以看出:这一天的最高温度是37℃,,是在15时到达的;(2)∵最高温是15时37℃,最低温是3时23℃,∴温差为:,则经过的时间为::(时);(3)观察图像可知:从3时到15时温度在上升,在0时到3时、15时到24时温度在下降.本题考查了函数的图象,属于基础题,要求同学们具备一定的观察图象能力,能从图象中获取解题需要的信息.18、详见解析【解析】
连接AC交EF与点O,连接AF,CE.根据AE=CF,AE∥CF可知四边形AECF是平行四边形,据此可得出结论.【详解】解:如图:连接AC交EF与点O,点O即为所求.
理由:连接AF,CE,AC.
∵ABCD为平行四边形,
∴AE∥FC.
又∵AE=CF,
∴四边形AECF是平行四边形,
∴OE=OF,
∴点O是线段EF的中点.本题考查的是作图-基本作图,熟知平行四边形的性质是解答此题的关键.一、填空题(本大题共5个小题,每小题4分,共20分)19、【解析】分析:根据分式的运算法则即可求出答案.详解:原式=3xy2•=故答案为.点睛:本题考查了分式的运算法则,解题的关键是熟练运用分式的运算法则,本题属于基础题型.20、120°10【解析】∵四边形ABCD是菱形,∴AB=BC=CD=DA,AD∥BC,∵E是AB的中点,且DE⊥AB,∴AE=AD,∴sin∠ADE=,∴∠ADE=30°,∴∠DAE=60°,∵AD∥BC,∴∠ABC=180°−60°=120°;连接BD,交AC于点O,在菱形ABCD中,∠DAE=60°,∴∠CAE=30°,AB=10,∴OB=5,根据勾股定理可得:AO==,即AC=.故答案为:120°;.点睛:本题考查了菱形的性质、线段垂直平分线的性质、勾股定理等知识点,熟练掌握菱形的性质是解题的关键.由在菱形ABCD中,E是AB的中点,且DE⊥AB,可证得AE=AD,即可求得∠ADE=30°,继而求得答案;连接BD,交AC于点O,易得AC⊥BD,由勾股定理,即可求得答案.21、3或1【解析】
分k>0和k<0两种情况,结合一次函数的增减性,可得到关于k、b的方程组,求解即可.【详解】解:当k>0时,此函数y随x增大而增大,∵当1≤x≤4时,3≤y≤1,∴当x=1时,y=3;当x=4时,y=1,∴,解得;当k<0时,此函数y随x增大而减小,∵当1≤x≤4时,3≤y≤1,∴当x=1时,y=1;当x=4时,y=3,∴,解得:,∴k+b=3或1.故答案为:3或1.本题考查的是一次函数的性质,在解答此题时要注意进行分类讨论.22、【解析】分析:根据方程的系数结合根的判别式,即可得出△=16-8m≥0,解之即可得出m的取值范围.详解:∵关于x的方程有实数根,
∴△=(-4)²-4×2m=16-8m≥0,
解得:m≤2
故答案为:m≤2点睛:本题考查了根的判别式,根的判别式大于0,方程有两个不相等的实数根;根的判别式等于0,方程有两个相等的实数根;根的判别式小于0,方程没有实数根.23、.【解析】解:=;故答案为:.点睛:此题考查了二次根式的乘法,掌握二次根式的运算法则:乘法法则是本题的关键.二、解答题(本大题共3个小题,共30分)24、(1)详见解析;(2)当旋转角的度数为时,;(3)【解析】
(1)由旋转的性质和矩形的性质,找出证明三角形全等的条件,根据全等三角形的性质即可得到答案;(2)连接,由旋转的性质和矩形的性质,证明,根据全等三角形的性质即可得到答案;(3)根据题意可知,当旋转至AG//CD时,的面积的最大,画出图形,求出面积即可.【详解】(1)证明:矩形是由矩形旋转得到的,,,又,∴,,;(2)解:连接矩形是由矩形旋转得到的,,,,∴,,即,;,,,当旋转角的度数为时,;(3)解:如图:当旋转至AG//CD时,的面积的最大,∵,∴,,∴;∴的面积的最大值为.本题考查了旋转的性质,矩形的性质,全等三角形的判定和性质,以及三角形的面积公式,解题的关键是熟练掌握旋转的性质,矩形的性质,全等三角形的判定和性质,正确做出辅助线,利用所学的性质进行求解.注意利用数形结合的思想进行解题.25、(1)∠QEP=60°;(2)∠QEP=60°,证明详见解析;(3)【解析】
(1)如图1,先根据旋转的性质和等边三角形的性质得出∠PCA=∠QCB,进而可利用SAS证明△CQB≌△CPA,进而得∠CQB=∠CPA,再在△PEM和△CQM中利用三角形的内角和定理即可求得∠QEP=∠QCP,从而完成猜想;(2)以∠DAC是锐角为例,如图2,仿(1)的证明思路利用SAS证明△ACP≌△BCQ,可得∠APC=∠Q,进一步即可证得结论;(3)仿(2)可证明△ACP≌△BCQ,于是AP=BQ,再求出AP的长即可,作CH⊥AD于H,如图3,易证∠APC=30°,△ACH为等腰直角三角形,由AC=4可求得CH、PH的长,于是AP可得,问题即得解决.【详解】解:(1)∠QEP=60°;证明:连接PQ,如图1,由题意得:PC=CQ,且∠PCQ=60°,∵△ABC是等边三角形,∴∠ACB=60°,∴∠PCA=∠QCB,则在△CPA和△CQB中,,∴△CQB≌△CPA(SAS),∴∠CQB
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 线程安全自动检测技术-洞察分析
- 医生妇产科申报副高职称工作总结(7篇)
- 《服装零售业概况》课件
- CRM在客户信息管理中的价值
- 以人为本家庭急救知识与技能的普及与推广
- 创新创业教育推广提升学生就业竞争力的途径
- 2025房地产销售代理合同
- 羰基二咪唑项目可行性研究报告
- 2025年铸造辅助材料项目提案报告
- 猎枪刷行业行业发展趋势及投资战略研究分析报告
- 大一无机化学期末考试试题
- NB/T 10727-2021煤矿膏体充填开采技术规范
- YY/T 0698.3-2009最终灭菌医疗器械包装材料第3部分:纸袋(YY/T 0698.4所规定)、组合袋和卷材(YY/T 0698.5所规定)生产用纸要求和试验方法
- GB/T 16989-2013土工合成材料接头/接缝宽条拉伸试验方法
- GA 1517-2018金银珠宝营业场所安全防范要求
- 评标专家库系统系统总体建设方案参考模板
- 酱香型白酒生产工艺课件
- 《证券期货经营机构及其工作人员廉洁从业规定》解读 100分
- 江苏省质量通病防治手册
- 气相色谱法分析(甲醇)原始记录
- DB63∕T 2013-2022 公路养护工程预算定额
评论
0/150
提交评论