版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
学校________________班级____________姓名____________考场____________准考证号学校________________班级____________姓名____________考场____________准考证号…………密…………封…………线…………内…………不…………要…………答…………题…………第1页,共8页江苏省南通市2024-2025学年九上数学开学预测试题题号一二三四五总分得分批阅人A卷(100分)一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)1、(4分)一次函数y=﹣3x+5的图象不经过的象限是()A.第一象限 B.第二象限 C.第三象限 D.第四象限2、(4分)下面四个二次根式中,最简二次根式是()A. B. C. D.3、(4分)如图,是由四个全等的直角三角形和中间的小正方形拼成的一个大正方形,如果大正方形的面积是13,小正方形的面积是2,直角三角形较长的直角边为m,较短的直角边为n,那么(m+n)2的值为()A.23 B.24 C.25 D.无答案4、(4分)已知点A(1,2)在反比例函数y=kx的图象上,则该反比例函数的解析式是(A.y=1x B.y=4x C.y=25、(4分)下列图形中,不是中心对称图形的是()A.平行四边形 B.矩形 C.菱形 D.等边三角形6、(4分)甲、乙两人约好步行沿同一路线同一方向在某景点集合,已知甲乙二人相距660米,二人同时出发,走了24分钟时,由于乙距离景点近,先到达等候甲,甲共走了30分钟也到达了景点与乙相遇.在整个行走过程中,甲、乙两人均保持各自的速度匀速行走,甲、乙两人相距的路程(米)与甲出发的时间(分钟)之间的关系如图所示,下列说法错误的是()A.甲的速度是70米/分 B.乙的速度是60米/分C.甲距离景点2100米 D.乙距离景点420米7、(4分)如果反比例函数的图象在所在的每个象限内y都是随着x的增大而减小,那么m的取值范围是()A.m> B.m< C.m≤ D.m≥8、(4分)一个一元一次不等式的解集在数轴上表示如图所示,则该不等式的解集为()A.x≥2 B.x<2 C.x>2 D.x≤2二、填空题(本大题共5个小题,每小题4分,共20分)9、(4分)观察下面的变形规律:12+1=2-1,13+2=3-2,14+3=4-解答下面的问题:(1)若n为正整数,请你猜想1n+1(2)计算:(10、(4分)若关于x的分式方程=2a无解,则a的值为_____.11、(4分)对于分式,当x______时,分式无意义;当x______时,分式的值为1.12、(4分)如图,在△ABC中,∠A=∠B,D是AB边上任意一点DE∥BC,DF∥AC,AC=5cm,则四边形DECF的周长是_____.13、(4分)若是整数,则满足条件的最小正整数为________.三、解答题(本大题共5个小题,共48分)14、(12分)已知:AC是菱形ABCD的对角线,且AC=BC.(1)如图①,点P是△ABC的一个动点,将△ABP绕着点B旋转得到△CBE.①求证:△PBE是等边三角形;②若BC=5,CE=4,PC=3,求∠PCE的度数;(2)连结BD交AC于点O,点E在OD上且DE=3,AD=4,点G是△ADE内的一个动点如图②,连结AG,EG,DG,求AG+EG+DG的最小值.15、(8分)(1)如图1,正方形ABCD中,点E,F分别在边BC,CD上,∠EAF=45°,延长CD到点G,使DG=BE,连结EF,AG.求证:①∠BEA=∠G,②EF=FG.(2)如图2,等腰直角三角形ABC中,∠BAC=90°,AB=AC,点M,N在边BC上,且∠MAN=45°,若BM=1,CN=3,求MN的长.16、(8分)下面是小丁设计的“利用直角三角形和它的斜边中点作矩形”的尺规作图过程.已知:如图,在RtΔABC中,∠ABC=90°,0为AC的中点.求作:四边形ABCD,使得四边形ABCD为矩形.作法:①作射线BO,在线段BO的延长线上取点D,使得DO=BO;②连接AD,CD,则四边形ABCD为矩形.根据小丁设计的尺规作图过程.(1)使用直尺和圆规,在图中补全图形(保留作图痕迹);(2)完成下面的证明.证明:∴点O为AC的中点,∴AO=CO.又∵DO=BO,∵四边形ABCD为平行四边形(__________)(填推理的依据).∵∠ABC=90°,∴▱ABCD为矩形(_________)(填推理的依据).17、(10分)某学校八年级学生举行朗诵比赛,全年级学生都参加,学校对表现优异的学生进行表彰,设置—、二、三等奖和进步奖共四个奖项,赛后将八年级(1)班的获奖情况绘制成如图所示的两幅不完整的统计图,请报据图中的信息,解答下列问题:(1)八年级(1)班共有名学生;(2)将条形图补充完整;在扇形统计图中,“二等奖”对应的扇形的圆心角度数;(3)如果该八年级共有800名学生,请估计荣获一、二、三等奖的学生共有多少名.18、(10分)如图,已知正方形,点、分别在边、上,若,判断、的关系并证明.B卷(50分)一、填空题(本大题共5个小题,每小题4分,共20分)19、(4分)已知方程组的解为,则一次函数y=﹣x+1和y=2x﹣2的图象的交点坐标为_____.20、(4分)在Rt△ABC中,∠C=90°,AC=3,BC=1.作一边的垂直平分线交另一边于点D,则CD的长是______.21、(4分)已知如图所示,AB=AD=5,∠B=15°,CD⊥AB于C,则CD=___.22、(4分)函数y=x+1与y=ax+b的图象如图所示,那么,使y、y的值都大于0的x的取值范围是______.23、(4分)为了了解本校八年级学生的体能情况,随机抽查了其中30名学生,测试了1分钟仰卧起坐次数,并给制成如图所示的频数分布直方图,请根据图中信息,计算仰卧起坐次数在次的频率是______二、解答题(本大题共3个小题,共30分)24、(8分)如图,已知E、F分别是□ABCD的边BC、AD上的点,且BE=DF⑴求证:四边形AECF是平行四边形;⑵若BC=10,∠BAC=90°,且四边形AECF是菱形,求BE的长.25、(10分)如图,在平面直角坐标系中,直线分别与轴、轴交于点,,且点的坐标为,点为的中点.(1)点的坐标是________,点的坐标是________;(2)直线上有一点,若,试求出点的坐标;(3)若点为直线上的一个动点,过点作轴的垂线,与直线交于点,设点的横坐标为,线段的长度为,求与的函数解析式.26、(12分)小华思考解决如下问题:原题:如图1,点P,Q分别在菱形ABCD的边BC,CD上,∠PAQ=∠B,求证:AP=AQ.(1)小华进行探索,若将点P,Q的位置特殊化:把∠PAQ绕点A旋转得到∠EAF,使AE⊥BC,点E、F分别在边BC、CD上,如图1.此时她证明了AE=AF,请你证明;(1)由以上(1)的启发,在原题中,添加辅助线:如图3,作AE⊥BC,AF⊥CD,垂足分别为E,F.请你继续完成原题的证明;(3)如果在原题中添加条件:AB=4,∠B=60°,如图1,求四边形APCQ的周长的最小值.
参考答案与详细解析一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)1、C【解析】
一次项系数-3<1,则图象经过二、四象限;常数项5>1,则图象还过第一象限.【详解】解:∵-3<1,∴图象经过二、四象限;
又∵5>1,∴直线与y轴的交点在y轴的正半轴上,图象还过第一象限.
所以一次函数y=-3x+5的图象经过一、二、四象限,不经过第三象限.
故选:C.一次函数的图象经过第几象限,取决于x的系数及常数是大于1或是小于1.可借助草图分析解答.2、A【解析】分析:根据最简二次根式的概念进行判断即可.详解:A.是最简二次根式;B.被开方数含分母,故B不是最简二次根式;C.被开方数含能开得尽方的因数,故C不是最简二次根式;D.被开方数含有小数,故D不是最简二次根式.故选A.点睛:本题考查了最简二次根式的定义.根据最简二次根式的定义,最简二次根式必须满足两个条件:(1)被开方数不含分母;(2)被开方数不含能开得尽方的因数或因式.3、B【解析】
根据勾股定理,知两条直角边的平方等于斜边的平方,此题中斜边的平方即为大正方形的面积13,1mn即四个直角三角形的面积和,从而不难求得(m+n)1.【详解】(m+n)1=m1+n1+1mn=大正方形的面积+四个直角三角形的面积和=13+(13﹣1)=14.故选B.本题考查了勾股定理、正方形的性质、直角三角形的性质、完全平方公式等知识,解题的关键是利用数形结合的思想解决问题,属于中考常考题型.4、C【解析】
把点A(1,2)代入y=kx可得方程2=k【详解】解:∵点A(1,2)在反比例函数y=k∴2=k1∴k=2,则这个反比例函数的解析式是y=2故选:C.本题考查了用待定系数法求函数解析式,正确代入是解题的关键.5、D【解析】
根据中心对称图形的概念中心对称图形是图形沿对称中心旋转180度后与原图重合.【详解】解:A、平行四边形是中心对称图形,故本选项错误;B、矩形是中心对称图形,故本选项错误;C、菱形是中心对称图形,故本选项错误;D、等边三角形不是中心对称图形,故本选项正确.故选D.6、D【解析】
根据图中信息以及路程、速度、时间之间的关系一一判断即可.【详解】甲的速度==70米/分,故A正确,不符合题意;设乙的速度为x米/分.则有,660+24x-70×24=420,解得x=60,故B正确,本选项不符合题意,70×30=2100,故选项C正确,不符合题意,24×60=1440米,乙距离景点1440米,故D错误,故选D.本题考查一次函数的应用,行程问题等知识,解题的关键是读懂图象信息,灵活运用所学知识解决问题.7、B【解析】
根据反比例函数的性质可得1-2m>0,再解不等式即可.【详解】解:有题意得:反比例函数的图象在所在的每个象限内y都是随着x的增大而减小,1-2m>0,解得:m<,故选:B.此题主要考查了反比例函数的性质.对于反比例函数y=(k≠0),当k>0时,在每一个象限内,函数值y随自变量x的增大而减小;当k<0时,在每一个象限内,函数值y随自变量x增大而增大.8、D【解析】
直接将解集在数轴上表示出来即可,注意实心和空心的区别【详解】数轴上读出不等式解集为x≤2,故选D本题考查通过数轴读出不等式解集,属于简单题二、填空题(本大题共5个小题,每小题4分,共20分)9、(1)、n+1-【解析】试题分析:(1)根据所给等式确定出一般规律,写出即可;(2)先将各式分母有理化,此时发现除第二项和倒数第二项外,其他各项的和为0,故可求出答案.解:(1)﹣(2)原式=[(﹣1)+(﹣)+(﹣)+…+(﹣)](+1)=(﹣1)(+1)=()2﹣12=2016﹣1=1.点睛:本题主要考查了代数式的探索与规律,二次根式的混合运算,根据所给的等式找到规律是解题的关键.10、1或【解析】分析:直接解分式方程,再利用当1-2a=0时,当1-2a≠0时,分别得出答案.详解:去分母得:x-3a=2a(x-3),整理得:(1-2a)x=-3a,当1-2a=0时,方程无解,故a=;当1-2a≠0时,x==3时,分式方程无解,则a=1,故关于x的分式方程=2a无解,则a的值为:1或.故答案为1或.点睛:此题主要考查了分式方程的解,正确分类讨论是解题关键.11、【解析】
根据分母为零时,分式无意义;分子为零且分母不为零,分式的值为1,据此分别进行求解即可得.【详解】当分母x+2=1,即x=-2时,分式无意义;当分子x2-9=1且分母x+2≠1,即x=2时,分式的值为1,故答案为=-2,=2.本题考查了分式无意义的条件,分式的值为1的条件,从以下三个方面透彻理解分式的概念:(1)分式无意义⇔分母为零;(2)分式有意义⇔分母不为零;(2)分式值为零⇔分子为零且分母不为零.12、10cm【解析】
求出BC,求出BF=DF,DE=AE,代入得出四边形DECF的周长等于BC+AC,代入求出即可.【详解】解:∵∠A=∠B,
∴BC=AC=5cm,
∵DF∥AC,
∴∠A=∠BDF,
∵∠A=∠B,
∴∠B=∠BDF,
∴DF=BF,
同理AE=DE,
∴四边形DECF的周长为:CF+DF+DE+CE=CF+BF+AE+CE=BC+AC=5cm+5cm=10cm,
故答案为10cm.本题考查了平行线的性质,等腰三角形的性质和判定,关键是求出BF=DF,DE=AE.13、1【解析】
把28分解因数,再根据二次根式的定义判断出n的最小值即可.【详解】解:∵28=4×1,4是平方数,∴若是整数,则n的最小正整数值为1,故答案为1.本题考查了二次根式的定义,把28分解成平方数与另一个数相乘的形式是解题的关键.三、解答题(本大题共5个小题,共48分)14、(1)①见解析,②∠PCE=30°;(2)AG+EG+DG的最小值为1.【解析】
(1)①先判断出△ABC等边三角形,得出∠ABC=60°,再由旋转知BP=BE,∠PBE=∠ABC=60°,即可得出结论.②先用勾股定理的逆定理判断出△ACP是直角三角形,得出∠APC=90°,进而判断出∠PBE+∠PCE=90°,即可得出结论;(2)先判断出△G'DG是等边三角形,得出GG'=DG,即:AG+EG+DG=A'G'+EG+GG'得出当A'、G'、G、E四点共线时,A'G'+EG+G'G的值最小,即可得出结论.【详解】解:(1)①∵四边形ABCD是菱形∴AB=BC,∵AC=BC,∴AB=BC=AC,∴△ABC等边三角形,∴∠ABC=60°,由旋转知BP=BE,∠CBE=∠ABP∴∠CBE+∠PBC=∠ABP+∠PBC∴∠PBE=∠ABC=60°,∴△PBE是等边三角形;②由①知AB=BC=1∵由旋转知△ABP≌△CBE,∴AP=CE=4,∠APB=∠BEC,∵AP2+PC2=42+32=21=AC2,∴△ACP是直角三角形,∴∠APC=90°,∴∠APB+∠BPC=270°,∵∠APB=∠CEB,∴∠CEB+∠BPC=270°,∴∠PBE+∠PCE=360°-(∠CEB+∠BPC)=90°,∵∠PBE=∠ABC=60°,∴∠PCE=90°-60°=30°;(2)如图,将△ADG绕着点D顺时针旋转60°得到△A'DG',由旋转知△ADG≌△A'DG',∴A'D=AD=4,G'D=GD,A'G'=AG,∵∠G'DG=60°,G'D=GD,∴△G'DG是等边三角形,∴GG'=DG,∴AG+EG+DG=A'G'+EG+GG'∵当A'、G'、G、E四点共线时,A'G'+EG+G'G的值最小,即AG+EG+DG的值最小,∵∠A'DA=60°,∠ADE=∠ADC=30°,∴∠A'DE=90°,∴AG+EG+DG=A'G'+EG+G'G=A'E==1,∴AG+EG+DG的最小值为1.此题是四边形综合题,主要考查了等边三角形性质和判定,勾股定理,勾股定理的逆定理,旋转的性质,判断出点A',G',G,E四点共线时,A'G'+EG+G'G的值最小,是解本题的关键.15、(1)①见解析②见解析(1)【解析】
(1)在△ABE和△ADG中,根据SAS得出△ABE≌△ADG则∠BEA=∠G.然后在△FAE和△GAF中通过SAS证明得出△FAE≌△GAF,则EF=FG.(1)过点C作CE⊥BC,垂足为点C,截取CE,使CE=BM.连接AE、EN.在△ABM和△ACE中,通过SAS证明得出△ABM≌△ACE,AM=AE,∠BAM+∠CAN=45°.在△MAN和△EAN中,通过SAS证明得出△MAN≌△EAN,MN=EN.Rt△ENC中,由勾股定理,得EN1=EC1+NC1得出最终结果.【详解】(1)证明:在正方形ABCD中,∠ABE=∠ADG,AD=AB,在△ABE和△ADG中,,∴△ABE≌△ADG(SAS),∠BEA=∠G∴∠BAE=∠DAG,AE=AG,又∠BAD=90°,∴∠EAG=90°,∠FAG=45°在△FAE和△GAF中,,∴△FAE≌△GAF(SAS),∴EF=FG(1)解:如图,过点C作CE⊥BC,垂足为点C,截取CE,使CE=BM.连接AE、EN.∵AB=AC,∠BAC=90°,∴∠B=∠ACB=45°.∵CE⊥BC,∴∠ACE=∠B=45°.在△ABM和△ACE中,,∴△ABM≌△ACE(SAS).∴AM=AE,∠BAM=∠CAE.∵∠BAC=90°,∠MAN=45°,∴∠BAM+∠CAN=45°.于是,由∠BAM=∠CAE,得∠MAN=∠EAN=45°.在△MAN和△EAN中,,∴△MAN≌△EAN(SAS).∴MN=EN.在Rt△ENC中,由勾股定理,得EN1=EC1+NC1.∴MN1=BM1+NC1.∵BM=1,CN=3,∴MN1=11+31,∴MN=.本题主要考查全等三角形的判定定理、勾股定理,做辅助线是本题的难点.16、(1)作图如图所示,见解析(2)对角线互相平分的四边形是平行四边形,有一个角是直角的平行四边形是矩形.【解析】
(1)根据要求画出图形即可.(2)根据有一个角是直角的平行四边形是矩形即可证明.【详解】(1)如图,矩形ABCD即为所求.(2)理由:∵点O为AC的中点,∴AO=CO又∵DO=BO,∴四边形ABCD为平行四边形(对角线互相平分的四边形是平行四边形)∵∠ABC=90°,∴▱ABCD为矩形(有一个角是直角的平行四边形是矩形).故答案为:对角线互相平分的四边形是平行四边形,有一个角是直角的平行四边形是矩形.本题考查作图-复杂作图,矩形的判定等知识,解题的关键是熟练掌握基本知识.17、(1)50;(2)见解析;57.6°;(3)368.【解析】
(1)根据“不得奖”人数及其百分比可得总人数;(2)总人数乘以一等奖所占百分比可得其人数,补全图形,根据各项目百分比之和等于1求得二等奖所占百分比,再乘以360°即可得;(3)用总人数乘以荣获一、二、三等奖的学生占总人数的百分比即可.【详解】解:(1)八年级(1)班共有=50(2)获一等奖人数为:50×10%=5(人),补全图形如下:∵获“二等奖”人数所长百分比为1−50%−10%−20%−4%=16%,“二等奖”对应的扇形的圆心角度数是×16%=57.6,(3)(名)此题考查扇形统计图,条形统计图,用样本估计总体,解题关键在于看懂图中数据18、且.证明见解析.【解析】
先证明,得到及,再证得即可.【详解】且.证明如下.在正方形中,在和中∴∴又∵∴∴∴∴且本题考查了正方形的性质及全等三角形的判定和性质,熟练掌握相关性质是解题的关键.一、填空题(本大题共5个小题,每小题4分,共20分)19、(1,0)【解析】试题分析:二元一次方程组是两个一次函数变形得到的,所以二元一次方程组的解,就是函数图象的交点坐标试题解析:∵方程组的解为,∴一次函数y=-x+1和y=2x-2的图象的交点坐标为(1,0).考点:一次函数与二元一次方程(组).20、或【解析】
分两种情况:①当作斜边AB的垂直平分线PQ,与BC交于点D时,连接AD由PQ垂直平分线段AB,推出DA=DB,设DA=DB=x,在Rt△ACD中,∠C=90°,根据AD2=AC2+CD2构建方程即可解决问题;②当作直角边的垂直平分线PQ,与斜边AB交于点D时,连接CD,根据直角三角形斜边上的中线性质求得CD.【详解】解:当作斜边AB的垂直平分线PQ,与BC交于点D时,连接AD.∵PQ垂直平分线段AB,∴DA=DB,设DA=DB=x,在Rt△ACD中,∠C=90°,AD2=AC2+CD2,∴x2=32+(1-x)2,解得x=,∴CD=BC-DB=1-=;当作直角边的垂直平分线PQ或P′Q′,都与斜边AB交于点D时,连接CD,则D是AB的中点,∴CD=AB=,综上可知,CD=或.故答案为:或.本题考查基本作图,线段的垂直平分线的性质,勾股定理等知识,直角三角形斜边上的中线等于斜边的一半,解题的关键是学会添加常用辅助线,构造直角三角形解决问题.21、【解析】
根据等边对等角可得∠ADB=∠B,再根据三角形的一个外角等于与它不相邻的两个内角的和求出∠DAC=30°,然后根据直角三角形30°角所对的直角边等于斜边的一半可得CD=AD.【详解】∵AB=AD,∴∠ADB=∠B=15°,∴∠DAC=∠ADB+∠B=30°,又∵CD⊥AB,∴CD=AD=×5=.故答案为:.本题考查了直角三角形30°角所对的直角边等于斜边的一半的性质,三角形的一个外角等于与它不相邻的两个内角的和的性质,熟记各性质是解题的关键.22、−1<x<2.【解析】
根据x轴上方的图象的y值大于0进行解答.【详解】如图所示,x>−1时,y>0,当x<2时,y>0,∴使y、y的值都大于0的x的取值范围是:−1<x<2.故答案为:−1<x<2.此题考查两条直线相交或平行问题,解题关键在于x轴上方的图象的y值大于023、0.4【解析】
根据计算仰卧起坐次数在次的频率.【详解】由图可知:仰卧起坐次数在次的频率.故答案为:.此题考查了频率、频数的关系:.二、解答题(本大题共3个小题,共30分)24、⑴证明见解析⑵5【解析】
(1)首先由已知证明AF∥EC,BE=DF,推出四边形AECF是平行四边形.(2)由已知先证明AE=BE,即BE=AE=CE,从而求出BE的长【详解】⑴证明:如图∵四边形ABCD是平行四边形,∴AD∥BC,且AD=BC,∴AF∥EC,∵BE=DF,∴AF=EC∴四边形AECF是平行四边形⑵解:∵四边形AECF是菱形,∴AE=EC∴∠1=∠2分∵∠3=90°-∠2,∠4=90°-∠1,∴∠3=∠4,∴AE=BE∴BE=AE=CE=BC=525、(1),;(2)或;(3).【解析】
(1)将点A(8,0)代入可求得一次函数解析式,再令x=0即可得到B点坐标;因为C是A、B中点,利用中点坐标公式可求出C点坐标;(2)先求出△AO
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2025届江西省南昌市初中教育集团化联盟中考生物对点突破模拟试卷含解析
- 法律法规经济与施工-二级注册建筑师《法律、法规、经济与施工》押题密卷4
- 北师大版五年级语文上册导学案教案
- 某制药有限公司年度自检计划
- 人教版语文一年级上册全册电子备课教案
- 部编版数学一年级下册全册教案
- 高一化学教案:专题第二单元第二课时乙酸酯()
- 2024高中物理第一章电磁感应章末复习课达标作业含解析粤教版选修3-2
- 2024高中语文第2单元孟子蚜第6课我善养吾浩然之气练习含解析新人教版选修先秦诸子蚜
- 2024高中语文精读课文二第5课1达尔文:兴趣与恒心是科学发现的动力一课堂练习含解析新人教版选修中外传记蚜
- 采购部目标责任书目标责任书大全
- 安全生产风险分级管控和隐患排查治理体系(双重预防体系)建设实施方案
- LY/T 3292-2021自然保护地生态旅游规范
- JJF 1069-2012法定计量检定机构考核规范
- 政府采购业务知识培训课件
- GA 1800.1-2021电力系统治安反恐防范要求第1部分:电网企业
- 国家基本药物的合理应用培训课件
- 三年级上册语文作文课件-《我学会了……》(共15张PPT)-全国通用
- 质量系统 GMP 实施指南
- 住房公积金缴存情况专项审计报告
- 猴痘病毒资料
评论
0/150
提交评论