(前两节在一起的)随机事件的概率精修版分析_第1页
(前两节在一起的)随机事件的概率精修版分析_第2页
(前两节在一起的)随机事件的概率精修版分析_第3页
(前两节在一起的)随机事件的概率精修版分析_第4页
(前两节在一起的)随机事件的概率精修版分析_第5页
已阅读5页,还剩36页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

3.1.1随机事件的概率3.1.1随机事件的概率

在第二次世界大战中,美国曾经宣布:一名优秀数学家的作用超过10个师的兵力.这句话有一个非同寻常的来历.1943年以前,在大西洋上英美运输船队常常受到德国潜艇的袭击,当时,英美两国限于实力,无力增派更多的护航舰,一时间,德军的“潜艇战”搞得盟军焦头烂额.为此,有位美国海军将领专门去请教了几位数学家,数学家们运用概率论分析后得出,舰队与敌潜艇相遇是一个随机事件,从数学角度来看这一问题,它具有一定的规律性.一定数量的船(为100艘)编队规模越小,编次就越多(为每次20艘,就要有5个编次),编次越多,与敌人相遇的概率就越大.比如5位同学放学都回自己家里,老师要找1位同学的话,随便去哪家都行。但若这5位同学都在其中某一家的话,老师要找几家才能找到,一次找到的可能性只有20%。

1名数学家=10个师

美国海军接受了数学家的建议,命令舰队在指定海域集合,再集体通过危险海域,然后各自驶向预定港口.结果奇迹出现了:盟军舰队遭袭被击沉的概率由原来的25%降为1%,大大减少了损失,保证了物资的及时供应.在自然界和实际生活中,我们会遇到各种各样的现象.如果从结果能否预知的角度来看,可以分为两大类:

另一类现象的结果是无法预知的,即在一定的条件下,出现那种结果是无法预先确定的,这类现象称为随机现象.

一类现象的结果总是确定的,即在一定的条件下,它所出现的结果是可以预知的,这类现象称为确定性现象;下面各事件的发生与否,各有什么特点?(1)导体通电时发热;(6)在标准大气压下且温度低于0℃时,冰融化.(5)抛一枚硬币,正面朝上;(4)在常温下,铁熔化;(3)抛一石块,下落;(2)李强射击一次,中靶;

必然事件:在条件S下,一定会发生的事件,叫做必然事件.

比如:“(1)导体通电时发热”,“(3)抛一石块,下落”都是必然事件.一.必然事件、不可能事件、随机事件

不可能事件:在条件S下,一定不会发生的事件,叫做不可能事件.

比如:“(4)在常温下,铁能熔化”,“(6)在标准大气压下且温度低于0℃时,冰融化”,都是不可能事件.

随机事件:在条件S下可能发生也可能不发生的事件,叫做随机事件.

比如“(2)李强射击一次,中靶”,“(5)掷一枚硬币,出现正面”都是随机事件.

注意:随机事件要搞清楚什么是随机事件的条件和结果。

事件的结果是相应于“一定条件而言的。因此,要弄清某一随机事件必须明确何为事件发生的条件,何为在此条件下产生的结果。

例题分析

例1指出下列事件中,哪些是不可能事件?哪些是必然事件?哪些是随机事件?(2)没有空气,动物也能生存下去;(5)某一天内电话收到的呼叫次数为0;

(6)一个袋内装有形状大小相同的一个白球和一个黑球,从中任意摸出1个球则为白球.(1)若都是实数,则;(3)在标准大气压下,水在温度时沸腾;(4)直线过定点;二.概率的定义及其理解

随机事件及其概率

要了解随机事件发生的可能性大小,最直接的方法就是试验。

第一步:

每人各取一枚同样的硬币,做10次掷硬币试验,记录正面向上的次数和比例,填入下表中:试验:

做抛掷一枚硬币的试验,观察它落地时哪一个面朝上姓名试验总次数正面朝上总次数正面朝上的比例

思考:试验结果与其他同学比较,你的结果和他们一致吗?为什么?

第二步:

由组长把本小组同学的试验结果统计一下,填入下表:组次试验总次数正面朝上总次数正面朝上的比例

思考:与其他小组试验结果比较,正面朝上的比例一致吗?为什么?

第三步

:把全班实验结果收集起来,也用条形图表示.班级试验总次数正面朝上总次数正面朝上的比例

第四步:

用横轴为实验结果,仅取两个值:1(正面)和0(反面),纵轴为实验结果出现的频率,画出你个人和所在小组的条形图,并进行比较,发现什么?

思考:这个条形图有什么特点?如果同学们重复一次上面的实验,全班汇总结果与这一次汇总结果一致吗?为什么?

第五步:请同学们找出掷硬币时“正面朝上”这个事件发生的规律性。

随机事件A在每次试验中是否发生是不能预知的,但是在大量重复实验后,随着次数的增加,事件A发生的频率会逐渐稳定在区间[0,1]中的某个常数上。结论:

例如,历史上曾有人做过抛掷硬币的大量重复试验,结果如下表:抛掷次数()正面向上次数(频数)频率()204810610.5181404020480.50691200060190.501624000120120500530000149840.499672088361240.5011随机事件及其概率1.频数,频率的定义:

在相同条件S下重复n次试验,观察某一事件A是否出现,称n次试验中事件A出现的次数nA为事件A出现的频数,称事件A出现的比例fn(A)=nA/n为事件A出现的频率。

2.频率的取值范围是什么?

概率的定义:

对于给定的随机事件A,如果随着实验次数的增加,事件A发生的频率fn(A)稳定在某个常数上,把这个常数记作P(A),称为事件A的概率,简称为A的概率。随机事件及其概率0.9510.9540.940.970.920.9优等品频率19029544701949245优等品数2000100050020010050抽取球数某批乒乓球产品质量检查结果表:当抽查的球数很多时,抽到优等品的频率接近于常数0.95,在它附近摆动。(1)频率是概率的近似值,随着试验次数的增加,频率会越来越接近概率。(2)频率本身是随机的,在试验前不能确定。(3)概率是一个确定的数,是客观存在的,与每次试验无关。

概率与频率的关系(必掌握之重点)注意以下几点:

(1)求一个事件的概率的基本方法是通过大量的重复试验;

(3)概率是频率的稳定值,而频率是概率的近似值;(2)只有当频率在某个常数附近摆动时,这个常数才叫做事件的概率;(4)概率反映了随机事件发生的可能性的大小;(5)必然事件的概率为1,不可能事件的概率为0.因此.

3.概率的范围:

知识小结1.随机事件的概念

在条件S下可能发生也可能不发生的事件,叫做随机事件.2.随机事件的概率的定义三.知识小结对于给定的随机事件A,如果随着实验次数的增加,事件A发生的频率fn(A)稳定在某个常数上,把这个常数记作P(A),称为事件A的概率,简称为A的概率。四.作业:

成才之路小本五.预习

3.1.2概率的意义对于给定的随机事件A,如果随着试验次数的增加,事件A发生的频率稳定在某个常数上,把这个常数记作P(A),称为事件A的概率,简称为A的概率。概率的定义是什么?频率与概率的有什么区别和联系?①频率是随机的,在实验之前不能确定;②概率是一个确定的数,与每次实验无关;③随着实验次数的增加,频率会越来越接近概率。④频率是概率的近似值,概率是用来度量事件发生可能性的大小问题1:有人说,既然抛掷一枚硬币出现正面的概率为0.5,那么连续两次抛掷一枚质地均匀的硬币,一定是一次正面朝上,一次反面朝上,你认为这种想法正确吗?1.概率的正确理解:答:这种说法是错误的,抛掷一枚硬币出现正面的概率为0.5,它是大量试验得出的一种规律性结果,对具体的几次试验来讲不一定能体现出这种规律性,在连续抛掷一枚硬币两次的试验中,可能两次均正面向上,也可能两次均反面向上,也可能一次正面向上,一次反面向上问题2:若某种彩票准备发行1000万张,其中有1万张可以中奖,则买一张这种彩票的中奖概率是多少?买1000张的话是否一定会中奖?答:不一定中奖,因为买彩票是随机的,每张彩票都可能中奖也可能不中奖。买彩票中奖的概率为1/1000,是指试验次数相当大,即随着购买彩票的张数的增加,大约有1/1000的彩票中奖

随机事件在一次实验中发生与否是随机的,但随机性中含有规律性:即随着实验次数的增加,该随机事件发生的频率会越来越接近于该事件发生的概率。概率的意义概率是从数量上反应随机事件发生的可能性大小的一个数学概念,它是对大量重复实验来说存在的一种统计规律性,对单次试验来说,某随机事件发生与否仍是随机的。2.概率在实际问题中的应用:游戏的公平性

在各类游戏中,如果每人获胜的概率相等,那么游戏就是公平的。是否公平只要看获胜的概率是否相等。

体育比赛中决定发球权的方法应该保证比赛双方先发球的概率相等,这样才是公平的。

大家有没有注意到在乒乓球、排球等体育比赛中,如何确定由哪一方先发球?你觉得那些方法对比赛双方公平吗?探究某中学高一年级有12个班,要从中选2个班代表学校参加某项活动,由于某种原因,1班必须参加,另外再从2至12班中选一个班,有人提议用如下方法:掷两个骰子得到的点数和是几,就选几班,你认为这种方法公平吗?1点2点3点4点5点6点1点2345672点3456783点4567894点56789105点678910116点7891011122.概率在实际问题中的应用:极大似然法例1.在做掷硬币的实验的时候,若连续掷了100次,结果100次都是正面朝上,对于这样的结果你会有什么看法?例2.在一个不透明的袋子中有两种球,一种白球,一种红球,并且这两种球一种有99个,另一种只有1个,若一个人从中随机摸出1球,结果是红色的,那你认为袋中究竟哪种球会是99个?

如果我们面临的是从多个可选答案中挑选正确答案的决策任务,那么“使得样本出现的可能性最大”可以作为决策的准则,这种判断问题的方法称为极大似然法。2.概率在实际问题中的应用:天气预报的概率解释

若某地气象局预报说,明天本地降水概率为70%,你认为下面两个解释哪一个能代表气象局的观点?(1)明天本地有70%的区域下雨,30%的区域不下雨;(2)明天本地有70%的机会下雨。

(1)显然是不正确的,因为70%的概率是说降水的概率,而不是说70%的区域降水。正确的选择是(2)。

降水概率的大小只能说明降水可能性的大小,概率值越大只能表示在一次试验中发生的可能性越大。在一次试验中“降水”这个事件是否发生仍然是随机的。(1)概率与公平性的关系:利用概率解释游戏规则的公平性,判断实际生活中的一些现象是否合理。(2)概率与决策的关系:在“风险与决策”中经常会用到统计中的极大似然法:在一次实验中,概率大的事件发生的可能性大。(3)概率与预报的关系:在对各种自然现象、灾害的研究过程中经常会用到概率的思想来进行预测。2.概率在实际问题中的应用:孟德尔小传

从维也纳大学回到布鲁恩不久,孟德尔就开始了长达8年的豌豆实验。孟德尔首先从许多种子商那里,弄来了34个品种的豌豆,从中挑选出22个品种用于实验。它们都具有某种可以相互区分的稳定性状,例如高茎或矮茎、圆料或皱科、灰色种皮或白色种皮等。豌豆杂交试验孟德尔把黄色和绿色的豌豆杂交

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论