版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
吉林省四平市公主岭市第五高级中学2025届高二上数学期末经典试题注意事项:1.答卷前,考生务必将自己的姓名、准考证号填写在答题卡上。2.回答选择题时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其它答案标号。回答非选择题时,将答案写在答题卡上,写在本试卷上无效。3.考试结束后,将本试卷和答题卡一并交回。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.数列中,满足,,设,则()A. B.C. D.2.记不超过x的最大整数为,如,.已知数列的通项公式,则使的正整数n的最大值为()A.5 B.6C.15 D.163.已知直线的方程为,则该直线的倾斜角为()A. B.C. D.4.已知直线l:过椭圆的左焦点F,与椭圆在x轴上方的交点为P,Q为线段PF的中点,若,则椭圆的离心率为()A. B.C. D.5.已知是双曲线的左焦点,为右顶点,是双曲线上的点,轴,若,则双曲线的离心率为()A. B.C. D.6.直线关于直线对称的直线方程为()A. B.C. D.7.已知圆:的面积被直线平分,圆:,则圆与圆的位置关系是()A.相离 B.相交C.内切 D.外切8.从某个角度观察篮球(如图甲),可以得到一个对称的平面图形,如图乙所示,篮球的外轮廓为圆,将篮球表面的粘合线视为坐标轴和双曲线,若坐标轴和双曲线与圆的交点将圆的周长八等分,且,则该双曲线的离心率为()A. B.C.2 D.9.已知直线是圆的对称轴,过点A作圆C的一条切线,切点为B,则|AB|=()A.1 B.2C.4 D.810.甲、乙两名射击运动员进行比赛,甲的中靶概率为0.8,乙的中靶概率为0.9,则两人各射击一次恰有一人中靶的概率为()A.0.26 B.0.28C.0.72 D.0.9811.已知复数满足(其中为虚数单位),则复数的虚部为()A. B.C. D.12.如图所示,用3种不同的颜色涂入图中的矩形A,B,C中,要求相邻的矩形不能使用同一种颜色,则不同的涂法有()ABCA.3种 B.6种C.12种 D.27种二、填空题:本题共4小题,每小题5分,共20分。13.函数,其导函数为函数,则__________14.椭圆与双曲线有公共焦点,设椭圆与双曲线在第一象限内交于点,椭圆与双曲线的离心率分别为为坐标原点,,则的取值范围是___________.15.设公差的等差数列的前项和为,已知,且,,成等比数列,则的最小值为______16.若命题“,不等式恒成立”为真命题,则实数a的取值范围是________.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(12分)设分别为椭圆的左右焦点,过的直线l与椭圆C相交于A,B两点,直线的倾斜角为60度,到直线l的距离为(1)求椭圆C的焦距;(2)如果,求椭圆C的方程18.(12分)某种机械设备随着使用年限的增加,它的使用功能逐渐减退,使用价值逐年减少,通常把它使用价值逐年减少的“量”换算成费用,称之为“失效费”.某种机械设备的使用年限(单位:年)与失效费(单位:万元)的统计数据如下表所示:使用年限(单位:年)1234567失效费(单位:万元)2.903.303.604.404.805.205.90(1)由上表数据可知,可用线性回归模型拟合与关系.请用相关系数加以说明;(精确到0.01)(2)求出关于的线性回归方程,并估算该种机械设备使用8年的失效费参考公式:相关系数线性回归方程中斜率和截距最小二乘估计计算公式:,参考数据:,,19.(12分)数列{}的首项为,且(1)证明数列为等比数列,并求数列{}的通项公式;(2)若,求数列{}的前n项和20.(12分)已知集合,.(1)当时,求AB;(2)设,,若是成立的充分不必要条件,求实数的取值范围.21.(12分)已知A,B两地相距200km,某船从A地逆水到B地,水速为8km/h,船在静水中的速度为vkm/h(v>8).若船每小时的燃料费与其在静水中速度的平方成正比,比例系数为k,当v=12km/h,每小时的燃料费为720元(1)求比例系数k(2)当时,为了使全程燃料费最省,船的实际前进速度应为多少?(3)当(x为大于8的常数)时,为了使全程燃料费最省,船的实际前进速度应为多少?22.(10分)记为等差数列的前项和,已知,.(1)求的通项公式;(2)求,并求的最小值.
参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、C【解析】由递推公式可归纳得,由此可以求出的值【详解】因为,,所以,,,因此故选C【点睛】本题主要考查利用数列的递推式求值和归纳推理思想的应用,意在考查学生合情推理的意识和数学建模能力2、C【解析】根据取整函数的定义,可求出的值,即可得到答案;【详解】,,,,,,当时,,使的正整数n的最大值为,故选:C3、D【解析】设直线倾斜角为,则,即可求出.【详解】设直线的倾斜角为,则,又因为,所以.故选:D.4、D【解析】由直线的倾斜角为,可得,结合,可推得是等边三角形,可得,计算可得离心率【详解】直线:过椭圆的左焦点,设椭圆的右焦点为,所以,又是的中点,是的中点,所以,又,所以,又,所以是等边三角形,所以,又在椭圆上,所以,所以,所以离心率为,故选:5、C【解析】根据条件可得与,进而可得,,的关系,可得解.【详解】由已知得,设点,由轴,则,代入双曲线方程可得,即,又,所以,即,整理可得,故,解得或(舍),故选:C.6、C【解析】先联立方程得,再求得直线的点关于直线对称点的坐标为,进而根据题意得所求直线过点,,进而得直线方程.【详解】解:联立方程得,即直线与直线的交点为设直线的点关于直线对称点的坐标为,所以,解得所以直线关于直线对称的直线过点,所以所求直线方程的斜率为,所以所求直线的方程为,即故选:C7、D【解析】根据题意,圆:的面积被直线平分,即直线经过圆的圆心,由此求出两圆的圆心和半径,然后判断两个圆的位置关系即可【详解】根据题意,圆:,即,其圆心为,半径,圆:的面积被直线平分,即直线经过圆的圆心,则有1−m+1=0,解可得m=2,即所以圆的圆心(1,−1),半径为1,圆的标准方程是,圆心(−2,3),半径为4,其圆心距,所以两个圆外切,故选:D.8、B【解析】设出双曲线方程,把双曲线上的点的坐标表示出来并代入到方程中,找到的关系即可求解.【详解】以O为原点,AD所在直线为x轴建系,不妨设,则该双曲线过点且,将点代入方程,故离心率为,故选:B【点睛】本题考查已知点在双曲线上求双曲线离心率的方法,属于基础题目9、C【解析】首先将圆心坐标代入直线方程求出参数a,求得点A的坐标,由切线与圆的位置关系构造直角三角形从而求得.【详解】圆即,圆心为,半径为r=3,由题意可知过圆的圆心,则,解得,点A坐标为,,切点为B则,故选:C【点睛】本题考查直线与圆的位置关系,属于基础题.10、A【解析】依据独立事件同时发生的概率即可求得甲乙两人各射击一次恰有一人中靶的概率.【详解】记甲中靶为事件A,乙中靶为事件B,则甲乙两人各射击一次恰有一人中靶,包含甲中乙不中和甲不中乙中两种情况,则甲乙两人各射击一次恰有一人中靶的概率为故选:A11、A【解析】由题目条件可得,即,然后利用复数的运算法则化简.【详解】因为,所以,则故复数的虚部为.故选:A.【点睛】本题考查复数的相关概念及复数的乘除运算,按照复数的运算法则化简计算即可,较简单.12、C【解析】根据给定信息,按用色多少分成两类,再分类计算作答.【详解】计算不同的涂色方法数有两类办法:用3种颜色,每个矩形涂一种颜色,有种方法,用2色,矩形A,C涂同色,有种方法,由分类加法计数原理得(种),所以不同的涂法有12种.故选:C二、填空题:本题共4小题,每小题5分,共20分。13、【解析】根据解析式,可求得解析式,代入数据,即可得答案.详解】∵,∴,∴.故答案为:.14、【解析】根据椭圆和双曲线得定义求得,再根据,可得,从而有,求出的范围,根据,结合基本不等式即可得出答案.【详解】解:设,则有,所以,即,又因为,所以,所以,即,则,由,得,所以,所以,则,由,得,因为,当且仅当,即时,取等号,因为,所以,所以,即,所以的取值范围是.故答案为:.15、##0.4【解析】应用等比中项的性质及等差数列通项公式求公差d,进而写出等差数列的通项公式、前n项和公式,再求目标式的最小值.【详解】由题设,,则,整理得,又,解得,故,,所以,故当时目标式有最小值为.故答案为:16、【解析】,不等式恒成立,只要即可,利用基本不等式求出即可得出答案.【详解】解:因为,不等式恒成立,只要即可,因为,所以,则,当且仅当,即时取等号,所以,所以.故答案为:.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17、(1)(2)【解析】(1)求得直线的方程,利用点到直线的距离列方程,由此求得,进而求得焦距.(2)联立直线的方程和椭圆方程,化简写出根与系数关系,结合来求得,从而求得椭圆的方程.【小问1详解】依题意,直线的方程为,到的距离为,所以焦距.【小问2详解】由,消去并化简得,设,则,,,,,所以,,,,,,,,,所以,所以椭圆的方程为.18、(1)答案见解析;(2);失效费为6.3万元【解析】(1)根据相关系数公式计算出相关系数可得结果;(2)根据公式求出和可得关于的线性回归方程,再代入可求出结果.【详解】(1)由题意,知,,∴结合参考数据知:因为与的相关系数近似为0.99,所以与的线性相关程度相当大,从而可以用线性回归模型拟合与的关系(2)∵,∴∴关于的线性回归方程为,将代入线性回归方程得万元,∴估算该种机械设备使用8年的失效费为6.3万元19、(1)证明见解析,;(2).【解析】(1)利用给定的递推公式变形,再利用等比数列定义直接判断并求出通项得解.(2)由(1)的结论求出,再利用裂项相消法计算作答.【小问1详解】数列{}中,,则,由得:,所以数列是首项为3,公比为2的等比数列,则有,即,所以数列{}的通项公式是.【小问2详解】由(1)知,,,则,所以数列{}的前n项和.20、(1);(2).【解析】(1)由,解得范围,可得,由可得:,解得.即可得出(2)由,解得.根据是成立的必要条件,利用包含关系列不等式即可得出实数的取值范围【详解】(1)由,解得,可得:,可得:,化为:,解得,所以=.(2)q是p成立的充分不必要条件,所以集合B是集合A的真子集.由,解得,又集合A=,所以或解得0≤a≤2,即实数a的取值范围是.【点睛】本题考查了简易逻辑的判定方法、集合之间的关系、不等式的解法,考查了推理能力与计算能力,属于基础题21、(1)5(2)8km/h(3)答案见解析【解析】(1)列出关系式,根据当v=12km/h,每小时的燃料费为720元即可求解;(2)列出燃料费的函数解析式,利用导数求其最值即可;(3)讨论x的范围,结合(2)的结论可得答案.【小问1详解】设每小时的燃料费为,则当v=12km/h,每小时的燃料费为720元,代入得.【小问2详解】由(1)得.设全程燃料费为y,则(),所以,令,解得v=0(舍去)或v=16,所以当时,;当时,,所以当v=16时,y取得最小值,故为了使全程燃料费最省,船的实际前进速度应为8km/h【小问3详解】由(2)得,若时,则y在区间上
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2024年制定的幼儿园劳动协议范本细则版B版
- 2024年商业信用担保协议标准格式版B版
- 2024年创新产品知识产权合作合同版B版
- 2024专业借款协议格式版B版
- 江南大学《复变函数与积分变换》2021-2022学年第一学期期末试卷
- 江南大学《产品工程设计基础》2022-2023学年第一学期期末试卷
- 佳木斯大学《美学》2021-2022学年第一学期期末试卷
- 2024年地产企业与教育机构协作开发项目协议范本版
- 2024年加盟合作经营合同样本版B版
- 佳木斯大学《儿科学》2021-2022学年第一学期期末试卷
- 《Illustrator实例教程(Illustrator 2020)(电子活页微课版)(第2版)》课件 第1、2章 初识Illustrator 2020、图形的绘制与编辑
- 公司财务-第4章 净现值
- 李丰的黄金K线理论
- 老年性骨质疏松的护理查房课件
- 1.3+化学键【中职专用】(高教版2021通用类)
- 《尼采善恶之彼岸》课件
- 2024届新高考生物冲刺热点复习:生物膜微专题
- 矿井建设过程安全管理指南
- 品牌市场调研指南
- 第五章法兰克福学派教程
- 劳动模范评选管理工作制度
评论
0/150
提交评论