版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2025届浙江省台州市高二上数学期末统考试题注意事项:1.答卷前,考生务必将自己的姓名、准考证号、考场号和座位号填写在试题卷和答题卡上。用2B铅笔将试卷类型(B)填涂在答题卡相应位置上。将条形码粘贴在答题卡右上角"条形码粘贴处"。2.作答选择题时,选出每小题答案后,用2B铅笔把答题卡上对应题目选项的答案信息点涂黑;如需改动,用橡皮擦干净后,再选涂其他答案。答案不能答在试题卷上。3.非选择题必须用黑色字迹的钢笔或签字笔作答,答案必须写在答题卡各题目指定区域内相应位置上;如需改动,先划掉原来的答案,然后再写上新答案;不准使用铅笔和涂改液。不按以上要求作答无效。4.考生必须保证答题卡的整洁。考试结束后,请将本试卷和答题卡一并交回。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.已知动直线的倾斜角的取值范围是,则实数m的取值范围是()A. B.C. D.2.过点且与直线平行的直线方程是()A. B.C. D.3.已知三个顶点都在抛物线上,且为抛物线的焦点,若,则()A.6 B.8C.10 D.124.设等差数列,的前n项和分别是,若,则()A. B.C. D.5.已知变量x,y具有线性相关关系,它们之间的一组数据如下表所示,若y关于x的线性回归方程为,则m=()x1234y0.11.8m4A.3.1 B.4.3C.1.3 D.2.36.如果椭圆上一点到焦点的距离等于6,则线段的中点到坐标原点的距离等于()A.7 B.10C.12 D.147.已知双曲线,过其右焦点作渐近线的垂线,垂足为,延长交另一条渐近线于点A.已知为原点,且,则()A. B.C. D.8.函数的导数记为,则等于()A. B.C. D.9.直线的倾斜角为()A.0 B.C. D.10.设,则“”是“直线与直线平行”的()A.充分不必要条件 B.必要不充分条件C.充分必要条件 D.既不充分也不必要条件11.设变量,满足约束条件则的最小值为()A.3 B.-3C.2 D.-212.已知双曲线,过点作直线l与双曲线交于A,B两点,则能使点P为线段AB中点的直线l的条数为()A.0 B.1C.2 D.3二、填空题:本题共4小题,每小题5分,共20分。13.设抛物线的焦点为,直线过焦点,且与抛物线交于两点,,则__________14.已知动圆P过定点,且在定圆的内部与其相内切,则动圆P的圆心的轨迹方程为______15.如图,椭圆的左、右焦点分别为,过椭圆上的点作轴的垂线,垂足为,若四边形为菱形,则该椭圆的离心率为_________.16.已知函数有三个零点,则实数的取值范围为___________.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(12分)已知抛物线的焦点与曲线的右焦点重合.(1)求抛物线的标准方程;(2)若抛物线上的点满足,求点的坐标.18.(12分)在四面体ABCD中,CB=CD,,且E,F分别是AB,BD的中点,求证:(I)直线;(II).19.(12分)已知圆与直线(1)若,直线与圆相交与,求弦长(2)若直线与圆无公共点求的取值范围20.(12分)已知圆的圆心为,且圆经过点(1)求圆的标准方程;(2)若圆:与圆恰有两条公切线,求实数取值范围21.(12分)已知数列满足(1)求数列的通项公式;(2)是否存在正实数a,使得不等式对一切正整数n都成立?若存在,求出a的取值范围;若不存在,请说明理由.22.(10分)已知椭圆的一个焦点与抛物线的焦点重合,椭圆上的动点到焦点的最大距离为.(1)求椭圆的标准方程;(2)过作一条不与坐标轴垂直的直线交椭圆于两点,弦的中垂线交轴于,当变化时,是否为定值?若是,定值为多少?
参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、B【解析】根据倾斜角与斜率的关系可得,即可求m的范围.【详解】由题设知:直线斜率范围为,即,可得.故选:B.2、A【解析】由题意设直线方程为,根据点在直线上求参数即可得方程.【详解】由题设,令直线方程为,所以,可得.所以直线方程为.故选:A.3、D【解析】设,,,由向量关系化为坐标关系,再结合抛物线的焦半径公式即可计算【详解】由得焦点,准线方程为,设,,由得则,化简得所以故选:D4、C【解析】结合等差数列前项和公式求得正确答案.【详解】依题意等差数列,的前n项和分别是,由于,故可设,,当时,,,所以,所以.故选:C5、A【解析】先求得样本中心,代入回归方程,即可得答案.【详解】由题意得,又样本中心在回归方程上,所以,解得.故选:A6、A【解析】可由椭圆方程先求出,在利用椭圆的定义求出,利用已知求解出,再取的中点,连接,利用中位线,即可求解出线段的中点到坐标原点的距离.【详解】因为椭圆,,所以,结合得,,取的中点,连接,所以为的中位线,所以.故选:A.7、C【解析】画出图象,结合渐近线方程得到,,进而得到,结合渐近线的斜率及角度关系,列出方程,求出,从而求出.【详解】渐近线为,如图,过点F作FB垂直于点B,交于点A,则到渐近线距离为,则,又,由勾股定理得:,则,又,,所以,解得:,所以.故选:C8、D【解析】求导后代入即可.【详解】,.故选:D.9、D【解析】根据斜率与倾斜角的关系求解即可.【详解】由题的斜率,故倾斜角的正切值为,又,故.故选:D.10、A【解析】根据两直线平行的充要条件求出a的值,然后可判断.【详解】当时,,所以两直线平行;若两直线平行,则且,解得或,所以,“”是“直线与直线平行”的充分不必要条件.故选:A11、D【解析】转化为,则最小即直线在轴上的截距最大,作出不等式组表示的可行域,数形结合即得解【详解】转化为,则最小即直线在轴上的截距最大作出不等式组表示的可行域如图中阴影部分所示,作出直线,平移该直线,当直线经过时,在轴上的截距最大,最小,此时,故选:D12、A【解析】先假设存在这样的直线,分斜率存在和斜率不存在设出直线的方程,当斜率k存在时,与双曲线方程联立,消去,得到关于的一元二次方程,直线与双曲线相交于两个不同点,则,,又根据是线段的中点,则,由此求出与矛盾,故不存在这样的直线满足题意;当斜率不存在时,过点的直线不满足条件,故符合条件的直线不存在.详解】设过点的直线方程为或,①当斜率存在时有,得(*)当直线与双曲线相交于两个不同点,则必有:,即又方程(*)的两个不同的根是两交点、的横坐标,又为线段的中点,,即,,使但使,因此当时,方程①无实数解故过点与双曲线交于两点、且为线段中点的直线不存在②当时,经过点的直线不满足条件.综上,符合条件的直线不存在故选:A二、填空题:本题共4小题,每小题5分,共20分。13、【解析】抛物线焦点为,由于直线和抛物线有两个交点,故直线斜率存在.根据抛物线的定义可知,故的纵坐标为,横坐标为.不妨设,故直线的方程为,联立直线方程和抛物线方程,化简得,解得,故.所以.【点睛】本小题主要考查直线和抛物线的位置关系,考查抛物线的几何性质和定义.考查三角形面积公式.在解题过程中,先根据题目所给抛物线的方程求得焦点的坐标,然后利用抛物线的定义:到定点的距离等于到定直线的距离,由此求得点的坐标,进而求得直线的方程,联立直线方程和抛物线方程求得点的坐标.最后求得面积比.14、【解析】设切点为,根据题意,列出点满足的关系式即.则点的轨迹是椭圆,然后根据椭圆的标准方程求点的轨迹方程【详解】设动圆和定圆内切于点,动点到定点和定圆圆心距离之和恰好等于定圆半径,即,点的轨迹是以,为两焦点,长轴长为10的椭圆,,点的轨迹方程为,故答案:15、【解析】根据题意可得,利用推出,进而得出结果.【详解】由题意知,,将代入方程中,得,因为,所以,整理,得,又,所以,由,解得.故答案为:16、【解析】由题意可得与的图象有三个不同的交点,经判断时不符合题意,当时,时,两个函数图象有一个交点,可得时与的图象有两个交点,等价于与的图象有两个不同的交点,对求导,数形结合即可求解.【详解】令可得,若函数函数有三个零点,则可得方程有三个根,即与的图象有三个不同的交点,作出的图象如图:当时,是以为顶点开口向下的抛物线,此时与的图象没有交点,不符合题意;当时,与的图象只有一个交点,不符合题意;当时,时,与的图象有一个交点,所以时与的图象有两个交点,即方程有两个不等的实根,即方程有两个不等的实根,可得与的图象有两个不同的交点,令,则,由即可得,由即可得,所以在单调递增,在单调递减,作出其图象如图:当时,,当时,可得与的图象有两个不同的交点,即时,函数有三个零点,所以实数的取值范围为,故答案为:【点睛】方法点睛:已知函数有零点(方程有根)求参数值(取值范围)常用的方法:(1)直接法:直接求解方程得到方程的根,再通过解不等式确定参数范围;(2)分离参数法:先将参数分离,转化成求函数的值域问题加以解决;(3)数形结合法:先对解析式变形,进而构造两个函数,然后在同一平面直角坐标系中画出函数的图象,利用数形结合的方法求解.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17、(1);(2)或.【解析】(1)求出双曲线的右焦点坐标,可求出的值,即可得出抛物线的标准方程;(2)设点,由抛物线的定义求出的值,代入抛物线的方程可求得的值,即可得出点的坐标.【详解】(1)由双曲线方程可得,,所以,解得.则曲线的右焦点为,所以,.因此,抛物线的标准方程为;(2)设,由抛物线的定义及已知可得,解得.代入抛物线方程可得,解得,所以点的坐标为或.18、(I)证明见解析(II)证明见解析【解析】证明:(I)E,F分别为AB,BD的中点(II),又,所以19、(1);(2)或.【解析】(1)求出圆心到直线的距离,再由垂径定理求弦长;(2)由圆心到直线的距离大于半径列式求解的范围【详解】解:(1)圆,圆心为,半径,圆心到直线的距离为,弦长(2)若直线与圆无公共点,则圆心到直线的距离大于半径解得或20、(1);(2).【解析】(1)根据给定条件求出圆C的半径,再直接写出方程作答.(2)由给定条件可得圆C与圆O相交,由此列出不等式求解作答.【小问1详解】依题意,圆C的半径,所以圆的标准方程是:.【小问2详解】圆:圆心,半径为,因圆与圆恰有两条公切线,则有圆O与圆C相交,即,而,因此有,解得,所以实数的取值范围是.21、(1)(2)【解析】(1)通过构造新数列求解;(2)由(1)得,再研究其单调性,从而得到最值,再解不等式即可求解.【小问1详解】由,假设其变形为,则有,所以,又.所以,即.【小问2详解】由(1),所以,令,则,所以,所以是递减数列,所以,所以使得不等式对一切正整数n都成立,则,即,因为为正实数,所以.22、(1)(2)是,【解析】(1)由抛物线方程求出其焦点坐标,结合椭圆的几何性质列出,的方程,解方
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2024年制定的幼儿园劳动协议范本细则版B版
- 2024年商业信用担保协议标准格式版B版
- 2024年创新产品知识产权合作合同版B版
- 2024专业借款协议格式版B版
- 江南大学《复变函数与积分变换》2021-2022学年第一学期期末试卷
- 江南大学《产品工程设计基础》2022-2023学年第一学期期末试卷
- 佳木斯大学《美学》2021-2022学年第一学期期末试卷
- 2024年地产企业与教育机构协作开发项目协议范本版
- 2024年加盟合作经营合同样本版B版
- 佳木斯大学《儿科学》2021-2022学年第一学期期末试卷
- 铸牢中华民族共同体意识-形考任务3-国开(NMG)-参考资料
- 2024年新中国成立75周年课件
- 《心理健康教育主题班会》主题
- GB 30254-2024高压三相笼型异步电动机能效限定值及能效等级
- 租赁厂房和仓库消防安全管理办法知识培训
- 重大事故隐患判定标准与相关事故案例培训课件
- JT-T-795-2011事故汽车修复技术规范
- 污水处理厂管道工程施工方案1
- 深圳市中小学生流感疫苗接种知情同意书
- 《中国近现代史纲要》第八章-中华人民共和国的成立与中国社会主义建设道路的探索
- 中心医院职务津补贴发放办法(讨论稿)
评论
0/150
提交评论