版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
湖南省邵东县两市镇第二中学2025届数学高一上期末检测试题考生须知:1.全卷分选择题和非选择题两部分,全部在答题纸上作答。选择题必须用2B铅笔填涂;非选择题的答案必须用黑色字迹的钢笔或答字笔写在“答题纸”相应位置上。2.请用黑色字迹的钢笔或答字笔在“答题纸”上先填写姓名和准考证号。3.保持卡面清洁,不要折叠,不要弄破、弄皱,在草稿纸、试题卷上答题无效。一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1.若<α<π,化简的结果是()A. B.C. D.2.以点为圆心,且与轴相切的圆的标准方程为()A. B.C. D.3.设,,,则的大小关系是()A B.C. D.4.已知函数,则函数()A.有最小值 B.有最大值C.有最大值 D.没有最值5.已如集合,,,则()A. B.C. D.6.已知函数若,则实数的值是()A.1 B.2C.3 D.47.如图,在正四棱柱中,,点是平面内的一个动点,则三棱锥的正视图和俯视图的面积之比的最大值为A B.C. D.8.设集合,.若,则()A. B.C. D.9.某地一年之内12个月的降水量从小到大分别为:46,48,51,53,53,56,56,56,58,64,66,71,则该地区的月降水量20%分位数和75%分位数为()A.51,58 B.51,61C.52,58 D.52,6110.函数的最小正周期是()A.π B.2πC.3π D.4π二、填空题:本大题共6小题,每小题5分,共30分。11.已知角的终边过点,则______12.已知在上的最大值和最小值分别为和,则的最小值为__________13.如图,矩形中,,,与交于点,过点作,垂足为,则______.14.已知,则______.15.在三棱柱中,各棱长相等,侧棱垂直于底面,点是侧面的中心,则与平面所成角的大小是______.16.下列四个命题中:①若奇函数在上单调递减,则它在上单调递增②若偶函数在上单调递减,则它在上单调递增;③若函数为奇函数,那么函数的图象关于点中心对称;④若函数为偶函数,那么函数的图象关于直线轴对称;正确的命题的序号是___________.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17.设全集,已知函数的定义域为集合A,函数的值域为集合B.(1)求;(2)若且,求实数a的取值范围.18.已知两条直线(1)若,求实数的值;(2)若,求实数的值19.某城市2021年12月8日的空气质量指数(AirQualityInex,简称AQI)与时间(单位:小时)的关系满足下图连续曲线,并测得当天AQI的最大值为103.当时,曲线是二次函数图象的一部分;当时,曲线是函数(且)图象的一部分,根据规定,空气质量指数AQI的值大于或等于100时,空气就属于污染状态(1)求函数的解析式;(2)该城市2021年12月8日这一天哪个时间段空气属于污染状态?并说明理由20.已知函数,其中.(1)当时,求的值域和单调区间;(2)若存在单调递增区间,求a的取值范围.21.某城市地铁项目正在紧张建设中,通车后将给市民出行带来便利.已知某条线路通车后,地铁的发车时间间隔(单位:分钟)满足.经测算,地铁载客量与发车时间间隔相关,当时地铁为满载状态,载客量为人,当时,载客量会减少,减少的人数与的平方成正比,且发车时间间隔为分钟时的载客量为人,记地铁载客量为.(1)求的表达式,并求当发车时间间隔为分钟时,地铁的载客量;(2)若该线路每分钟的净收益为(元),问当发车时间间隔为多少时,该线路每分钟的净收益最大?每分钟的最大净收益为多少?
参考答案一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1、A【解析】利用三角函数的平方关系式,根据角的范围化简求解即可【详解】=因为<α<π所以cos<0,结果为,故选A.【点睛】本题考查同角三角函数的基本关系式的应用,三角函数式的化简求值,考查计算能力2、C【解析】根据题中条件,得到圆的半径,进而可得圆的方程.【详解】以点为圆心且与轴相切的圆的半径为,故圆的标准方程是.故选:C.3、C【解析】详解】,即,选.4、B【解析】换元法后用基本不等式进行求解.【详解】令,则,因为,,故,当且仅当,即时等号成立,故函数有最大值,由对勾函数的性质可得函数,即有最小值.故选:B5、C【解析】根据交集和补集的定义可求.【详解】,故,故选:C.6、B【解析】根据分段函数分段处理的原则,求出,代入即可求解.【详解】由题意可知,,,又因为,所以,解得.故选:B.7、B【解析】由题意可知,P在正视图中的射影是在C1D1上,AB在正视图中,在平面CDD1C1上的射影是CD,P的射影到CD的距离是AA1=2,所以三棱锥P﹣ABC的正视图的面积为三棱锥P﹣ABC的俯视图的面积的最小值为,所以三棱锥P﹣ABC的正视图与俯视图的面积之比的最大值为,故选B点睛:思考三视图还原空间几何体首先应深刻理解三视图之间的关系,遵循“长对正,高平齐,宽相等”的基本原则,其内涵为正视图的高是几何体的高,长是几何体的长;俯视图的长是几何体的长,宽是几何体的宽;侧视图的高是几何体的高,宽是几何体的宽.8、C【解析】∵集合,,∴是方程的解,即∴∴,故选C9、B【解析】先把每月的降水量从小到大排列,再根据分位数的定义求解.【详解】把每月的降水量从小到大排列为:46,48,51,53,53,56,56,56,58,64,66,71,,所以该地区月降水量的分位数为;所以该地区的月降水量的分位数为.故选:B10、A【解析】化简得出,即可求出最小正周期.【详解】,最小正周期.故选:A.二、填空题:本大题共6小题,每小题5分,共30分。11、【解析】根据三角函数的定义求出r即可.【详解】角的终边过点,,则,故答案为【点睛】本题主要考查三角函数值的计算,根据三角函数的定义是解决本题的关键.三角函数的定义将角的终边上的点的坐标和角的三角函数值联系到一起,.知道终边上的点的坐标即可求出角的三角函数值,反之也能求点的坐标.12、【解析】如图:则当时,即时,当时,原式点睛:本题主要考查了分段函数求最值问题,在定义域为动区间的情况下进行分类讨论,先求出最大值与最小值的情况,然后计算,本题的关键是要注意数形结合,结合图形来研究最值问题,本题有一定的难度13、【解析】先求得,然后利用向量运算求得【详解】,,所以,.故答案为:14、【解析】利用商数关系,由得到代入求解.【详解】方法一:,则.方法二:分子分母同除,得.故答案为:【点睛】本题主要考查同角三角函数基本关系式的应用,还考查了运算求解的能力,属于基础题.15、60°【解析】取BC的中点E,则,则即为所求,设棱长为2,则,16、②③【解析】根据奇函数、偶函数的性质可判断①②,结合平移变换可判断③④.【详解】奇函数在关于原点对称的两个区间上具有相同的单调性,偶函数在关于原点对称的两个区间上具有相反的单调性,故①错误,②正确;因为函数为奇函数,图象关于原点对称,的图象可以由的图象向右平移1个单位长度得到,故的图象关于点对称,故③正确;函数的图象可以由函数的图象向左平移1个单位长度得到,因为为偶函数,图象关于y轴对称,所以的图象关于直线轴对称,故④错误.故答案为:②③三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17、(1){1};(2)【解析】(1)求出函数的定义域为集合,函数的值域为集合,即可求得答案;(2)根据集合的包含关系,列出相应的不等式,求得答案.【详解】(1)由题意知,,则,∴(2)若则;若则,综上,.18、(1);(2).【解析】(1)本小题考查两直线平行的性质,当两直线的斜率存在且两直线平行时,他们的斜率相等,注意截距不相等;由,得或-1,经检验,均满足;(2)本小题考查两直线垂直的性质,当两直线斜率存在时,两直线的斜率之积为,注意斜率不存在的情况;由于直线的斜率存在,所以,由此即可求出结果.试题解析:(1)因为直线的斜率存在,又∵,∴,∴或,两条直线在轴是的截距不相等,所以或满足两条直线平行;(2)因为两条直线互相垂直,且直线的斜率存在,所以,即,解得.点睛:设平面上两条直线的方程分别为;
比值法:和相交;和垂直;和平行;和重合
斜率法:(条件:两直线斜率都存在,则可化成点斜式)与相交;与平行;与重合;与垂直;19、(1)(2)当天在这个时间段,该城市的空气处于污染状态,理由见解析【解析】(1)先用待定系数法求得时的解析式,再算得当时的函数值,再由待定系数法可得时的解析式;(2)根据,分段解不等式即可.【小问1详解】当时,,将代入得,∵时,,∴由的图象是一条连续曲线可知,点在的图象上,当时,设,将代入得,∴【小问2详解】由题意可知,空气属于污染状态时,∴或,∴或,∴,∴当天在这个时间段,该城市的空气处于污染状态20、(1)见解析(2)【解析】(1)利用换元法设,求出的范围,再由对数函数的性质得出值域,再结合复合函数的单调性得出的单调区间;(2)分别讨论,两种情况,结合复合函数的单调性以及二次函数的性质得出a的取值范围.【详解】(1)当时,设,由,解得即函数的定义域为,此时则,即的值域为要求单调增(减)区间,等价于求的增(减)区间在区间上单调递增,在区间上单调递减在区间上单调递增,在区间上单调递减(2)当时,存在单调递增区间,则函数存在单调递增区间则判别式,解得或(舍)当时,存在单调递增区间,则函数存在单调递减区间则判别式,解得或,此时不成立综上,a的取值范围为【点睛】关键点睛:本题主要考查了对数型复合函数的单调性问题,解题的关键在于利用复合函数单调性的性质进行求解.21、(1),人(2)当发车时间间隔为分钟时,该线路每分钟的净收益最大,每分钟的最大净收益为元【解析】(1)由题意分别写出与时,的表达式,写成分段函数的形式,可得的表达式,可得的值;
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 小学五年综合发展规划(2020.9-2025.8)
- 菱形网格护坡施工方案
- 2024年渤海理工职业学院高职单招职业适应性测试历年参考题库含答案解析
- 医院会计核算和财务管理相关问题探讨培训讲学
- 二零二五年环保设施建设合同作废声明模板3篇
- 6年级英语上沪教版
- Module3Unit9DinnerisreadyPeriod1(课件)-沪教牛津版(深圳用)英语二年级上册
- (完整版)监控摄像头安装安全技术交底
- 东南大学-区域经济学课件(2013-9-21)
- 2025版4A级旅游景区门票销售合作协议3篇
- 现代物业服务体系实操系列物业服务沟通与投诉解决指南
- 2024年电力储能行业培训资料
- MSOP(测量标准作业规范)测量SOP
- 2022物联网操作系统安全白皮书
- 提高留置针规范使用率
- 垃圾清运服务投标方案(技术方案)
- 高速公路环保水保方案
- 2019年简单压力容器安全技术规程正式
- 降低成本费用的措施
- 工程量确认单范本
- 洁净室工程行业深度分析
评论
0/150
提交评论