版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
云南省文山州马关县一中2025届高一数学第一学期期末学业质量监测试题注意事项:1.答题前,考生先将自己的姓名、准考证号填写清楚,将条形码准确粘贴在考生信息条形码粘贴区。2.选择题必须使用2B铅笔填涂;非选择题必须使用0.5毫米黑色字迹的签字笔书写,字体工整、笔迹清楚。3.请按照题号顺序在各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试题卷上答题无效。4.保持卡面清洁,不要折叠,不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1.使不等式成立的充分不必要条件是()A. B.C. D.2.的值是A. B.C. D.3.已知命题“,使”是假命题,则实数的取值范围是()A. B.C. D.4.已知幂函数的图像过点,则下列关于说法正确的是()A.奇函数 B.偶函数C.定义域为 D.在单调递减5.已知集合,为自然数集,则下列结论正确的是()A. B.C. D.6.定义在上的偶函数的图象关于直线对称,当时,.若方程且根的个数大于3,则实数的取值范围为()A. B.C. D.7.以点为圆心,且与轴相切的圆的标准方程为()A. B.C. D.8.函数的部分图象如图所示,则可能是()A. B.C. D.9.如图,在中,为边上的中线,,设,若,则的值为A. B.C. D.10.过点且与直线平行的直线方程是()A. B.C. D.二、填空题:本大题共6小题,每小题5分,共30分。11.函数关于直线对称,设,则________.12.定义在上的函数满足则________.13.____.14.已知是定义在上的奇函数,当时,,则时,__________15.已知函数和函数的图像相交于三点,则的面积为__________.16.在中,已知是x的方程的两个实根,则________三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17.2021年8月,国务院教育督导委员会办公室印发《关于组织责任督学进行“五项管理”督导的通知》,通知指出,加强中小学生作业、睡眠、手机、读物、体质管理(简称“五项管理”),是深入推进学生健康成长的重要举措.宿州市要对全市中小学生“体能达标”情况进行摸底,采用普查与抽样相结合的方式进行.现从某样本校中随机抽取20名学生参加体能测试,将这20名学生随机分为甲、乙两组,其中甲、乙两组学生人数之比为3:2,测试后,两组各自的成绩统计如下:甲组学生的平均成绩为75分,方差为16;乙组学生的平均成绩为80分,方差为25(1)估计该样本校学生体能测试的平均成绩;(2)求这20名学生测试成绩的标准差.(结果保留整数)18.已知函数(是常数)是奇函数,且满足.(1)求的值;(2)试判断函数在区间上的单调性并用定义证明.19.设函数是定义域为R的奇函数.(1)求;(2)若,求使不等式对一切恒成立的实数k的取值范围;(3)若函数的图象过点,是否存在正数,使函数在上的最大值为2,若存在,求出a的值;若不存在,请说明理由.20.已知函数的图象相邻两条对称轴之间的距离为.(1)当时,求函数的最大值和最小值;(2)将函数的图象向左平移个单位后得到函数的图象,若为偶函数,求的值.21.如图所示,一块形状为四棱柱的木料,分别为的中点.(1)要经过和将木料锯开,在木料上底面内应怎样画线?请说明理由;(2)若底面是边长为2菱形,,平面,且,求几何体的体积.
参考答案一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1、A【解析】解一元二次不等式,再根据充分条件、必要条件的定义结合集合间的关系直接判断作答.【详解】解不等式得:,对于A,因,即是成立的充分不必要条件,A正确;对于B,是成立的充要条件,B不正确;对于C,因,且,则是成立的不充分不必要条件,C不正确;对于D,因,则是成立必要不充分条件,D不正确.故选:A2、B【解析】利用诱导公式求解.【详解】解:由诱导公式得,故选:B.3、B【解析】原命题等价于恒成立,故即可,解出不等式即可.【详解】因为命题“,使”是假命题,所以恒成立,所以,解得,故实数的取值范围是故选:B4、D【解析】设出幂函数的解析式,将所过点坐标代入,即可求出该函数.再根据幂函数的性质的结论,选出正确选项.【详解】设幂函数为,因为函数过点,所以,则,所以,该函数定义域为,则其既不是奇函数也不是偶函数,且由可知,该幂函数在单调递减.故选:D.5、C【解析】由题设可得,结合集合与集合、元素与集合的关系判断各选项的正误即可.【详解】由题设,,而为自然数集,则,且,所以,,故A、B、D错误,C正确.故选:C6、D【解析】由题设,可得解析式且为周期为4的函数,再将问题转化为与交点个数大于3个,讨论参数a判断交点个数,进而画出和的图象,应用数形结合法有符合题设,即可求范围.【详解】由题设,,即,所以是周期为4的函数,若,则,故,所以,要使且根的个数大于3,即与交点个数大于3个,又恒过,当时,在上,在上且在上递减,此时与只有一个交点,所以.综上,、的图象如下所示,要使交点个数大于3个,则,可得.故选:D【点睛】关键点点睛:根据已知条件分析出的周期性,并求出上的解析式,将问题转化为两个函数的交点个数问题,结合对数函数的性质分析a的范围,最后根据交点个数情况,应用数形结合进一步缩小参数的范围.7、C【解析】根据题中条件,得到圆的半径,进而可得圆的方程.【详解】以点为圆心且与轴相切的圆的半径为,故圆的标准方程是.故选:C.8、A【解析】先根据函数图象,求出和,进而求出,代入特殊点坐标,求出,,得到正确答案.【详解】由图象可知:,且,所以,不妨设:,将代入得:,即,,解得:,,当时,,故A正确,其他选项均不合要求.故选:A9、C【解析】分析:求出,,利用向量平行的性质可得结果.详解:因为所以,因为,则,有,,由可知,解得.故选点睛:本题主要考查平面向量的运算,属于中档题.向量的运算有两种方法,一是几何运算往往结合平面几何知识和三角函数知识解答,运算法则是:(1)平行四边形法则(平行四边形的对角线分别是两向量的和与差);(2)三角形法则(两箭头间向量是差,箭头与箭尾间向量是和);二是坐标运算:建立坐标系转化为解析几何问题解答(求最值与范围问题,往往利用坐标运算比较简单)10、D【解析】先由题意设所求直线为:,再由直线过点,即可求出结果.【详解】因为所求直线与直线平行,因此,可设所求直线为:,又所求直线过点,所以,解得,所求直线方程为:.故选D【点睛】本题主要考查求直线的方程,熟记直线方程的常见形式即可,属于基础题型.二、填空题:本大题共6小题,每小题5分,共30分。11、1【解析】根据正弦及余弦函数的对称性的性质可得的对称轴为函数g(x)=3cos(ωx+φ)+1的对称中心,即可求值.【详解】∵函数f(x)的图象关于x对称∵f(x)=3sin(ωx+φ)的对称轴为函数g(x)=3cos(ωx+φ)+1的对称中心故有则1故答案为1【点睛】本题考查了正弦及余弦函数的性质属于基础题12、【解析】表示周期为3的函数,故,故可以得出结果【详解】解:表示周期为3的函数,【点睛】本题考查了函数的周期性,解题的关键是要能根据函数周期性的定义得出函数的周期,从而进行解题13、.【解析】本题直接运算即可得到答案.【详解】解:,故答案为:.【点睛】本题考查指数幂的运算、对数的运算,是基础题.14、【解析】∵函数f(x)为奇函数∴f(-x)=-f(x)∵当x>0时,f(x)=log2x∴当x<0时,f(x)=-f(-x)=-log2(-x).故答案为.点睛:本题根据函数为奇函数可推断出f(-x)=-f(x)进而根据x>0时函数的解析式即可求得x<0时,函数的解析式15、【解析】解出三点坐标,即可求得三角形面积.【详解】由题:,,所以,,所以,.故答案为:16、##【解析】根据根与系数关系可得,,再由三角形内角和的性质及和角正切公式求,即可得其大小.【详解】由题设,,,又,且,∴.故答案为:.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17、(1)77(2)【解析】(1)由已知可得甲、乙两组学生的人数分别为12、8,求得总分进而可得平均成绩.(2)方法一:由变形得,设甲组学生的测试成绩分别为,,,乙组学生的测试成绩分别为,,.根据方差公式计算可得,.计算求得20人的方差,进而得出标准差.方法二:直接使用权重公式计算即可得出结果.【小问1详解】由题知,甲、乙两组学生的人数分别为12、8,则这20名学生测试成绩的平均数,故可估计该样本校学生体能测试的平均成绩为77【小问2详解】方法一:由变形得,设甲组学生的测试成绩分别为,,,乙组学生的测试成绩分别为,,由甲组学生的测试成绩的方差,得由乙组学生的测试成绩的方差,得故这20名学生的测试成绩的方差所以(方法二)直接使用权重公式所以.18、(1),(2)在区间(0,0.5)上是单调递减的【解析】(Ⅰ)∵函数是奇函数,则即∴------------------------2分由得解得∴,.------------------------------------------------------6分(Ⅱ)解法1:由(Ⅰ)知,∴,----------------------------------------8分当时,----------------------------10分∴,即函数在区间上为减函数.------------12分[解法2:设,则==------------------------------10分∵∴,,∴,即∴函数在区间上为减函数.--------------------------12分].19、(1)(2)(3)【解析】(1)根据是定义域为R的奇函数,由求解;(2),得到b的范围,从而得到函数的单调性,将对一切恒成立,转化为对一切恒成立求解;(3)根据函数的图象过点,求得b,得到,令,利用复合函数求最值的方法求解.【小问1详解】解:函数是定义域为R的奇函数,所以,解得,此时,满足;【小问2详解】因为,所以,解得,所以在R上是减函数,等价于,所以,即,又因为不等式对一切恒成立,所以对一切恒成立,所以,解得,所以实数k的取值范围是;【小问3详解】因为函数的图象过点,所以,解得,则,令,则,当时,是减函数,,因为函数在上的最大值为2,所以,即,解得,不成立;当时,是增函数,,因为函数在上最大值为2,所以,即,解得或(舍去),所以存在正数,使函数在上的最大值为2.20、(1)(2)【解析】(1)根据题意可得,从而可求得,再根据正弦函数的性质结合整体思想即可得出答案;(2)求出平移后的函数的解析式,再根据正余弦函数的奇偶性即可得出答案.【小问1详解】解:因为函数的图象相邻两条对称轴之间的距离为,所以,所以,所以,所以,当时,,所以当时,函数取得最小值,当时,函数取得最大值,所以;【小问2详解】解:函数的图象向左平移个单位后,得到函数,因为为偶函数,所以,所以,又因为,所以.21、(1)见解析(
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2024年家具厂供应链合作协议
- 2024年度旅游景区开发与经营权转让合同
- 船舶驾驶生涯发展展示
- 2024年度合作收益分配协议范本版B版
- 包含2024年度价格调整的国际货运代理合同2篇
- 2024年安全生产义务与责任指导性协议一
- 2024年度酒店水电暖设施维修保养合同2篇
- 二零二四年度网络系统搭建与维护合同2篇
- 2024年度水电工程建筑材料采购合同3篇
- 水电暖设施运行维护及安全保障合同(2024版)2篇
- GA/T 1343-2016防暴升降式阻车路障
- 企业风险管理-战略与绩效整合(中文版)
- 戊烷安全数据表(MSDS)
- 《交流电气化铁道牵引供电系统》教学课件合集
- 《恒大地产公司治理研究案例分析》
- 贵州省黔南布依族苗族自治州各县区乡镇行政村村庄村名明细及行政区划划分代码
- 从此不再抱怨课件
- 临时用工派工单
- 建筑施工项目每日情况报告(日报表)
- 迎接等级医院评审工作存在的主要问题及对策
- 监控检查记录表格模板
评论
0/150
提交评论