




版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
浙江省宁波市咸祥中学2025届数学高二上期末检测模拟试题注意事项:1.答题前,考生先将自己的姓名、准考证号填写清楚,将条形码准确粘贴在考生信息条形码粘贴区。2.选择题必须使用2B铅笔填涂;非选择题必须使用0.5毫米黑色字迹的签字笔书写,字体工整、笔迹清楚。3.请按照题号顺序在各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试题卷上答题无效。4.保持卡面清洁,不要折叠,不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.已知为等腰直角三角形的直角顶点,以为旋转轴旋转一周得到几何体,是底面圆上的弦,为等边三角形,则异面直线与所成角的余弦值为()A. B.C. D.2.圆心,半径为的圆的方程是()A. B.C. D.3.已知数列满足且,则()A.是等差数列 B.是等比数列C.是等比数列 D.是等比数列4.已知{an}是以10为首项,-3为公差的等差数列,则当{an}的前n项和Sn,取得最大值时,n=()A.3 B.4C.5 D.65.在等腰中,在线段斜边上任取一点,则线段的长度大于的长度的概率()A. B.C. D.6.已知等比数列的前3项和为3,,则()A. B.4C. D.17.在正三棱锥S-ABC中,AB=4,D、E分别是SA、AB中点,且DE⊥CD,则三棱锥S-ABC外接球的体积为()A.π B.πC.π D.π8.已知数列满足,且,则的值为()A.3 B.C. D.9.三等分角是“古希腊三大几何问题”之一,数学家帕普斯巧妙地利用圆弧和双曲线解决了这个问题.如图,在圆D中,为其一条弦,,C,O是弦的两个三等分点,以A为左焦点,B,C为顶点作双曲线T.设双曲线T与弧的交点为E,则.若T的方程为,则圆D的半径为()A. B.1C.2 D.10.空间直角坐标系中,已知则点关于平面的对称点的坐标为()A. B.C. D.11.直线l:的倾斜角为()A. B.C. D.12.用1,2,3,4这4个数字可写出()个没有重复数字的三位数A.24 B.12C.81 D.64二、填空题:本题共4小题,每小题5分,共20分。13.直线的倾斜角为_______________.14.设分别是平面的法向量,若,则实数的值是________15.围棋是一种策略性两人棋类游戏.已知某围棋盒子中有若干粒黑子和白子,从盒子中取出2粒棋子,2粒都是黑子的概率为,2粒恰好是同一色的概率比不同色的概率大,则2粒恰好都是白子的概率是______16.在数列中,满足,则________三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(12分)已知函数的图象在处的切线方程为.(1)求的解析式;(2)若关于的方程在上有解,求的取值范围.18.(12分)已知命题:“曲线表示焦点在轴上的椭圆”,命题:“曲线表示双曲线”.(1)若是真命题,求实数的取值范围;(2)若是的必要不充分条件,求实数的取值范围.19.(12分)已知双曲线C:(a>0,b>0)的离心率为,实轴长为2.(1)求双曲线的焦点到渐近线的距离;(2)若直线y=x+m被双曲线C截得的弦长为,求m的值.20.(12分)已知函数在处取得极值7(1)求的值;(2)求函数在区间上的最大值21.(12分)已知椭圆F:经过点且离心率为,直线和是分别过椭圆F的左、右焦点的两条动直线,它们与椭圆分别相交于点A、B和C、D,O为坐标原点,直线AB和直线CD相交于M.记直线的斜率分别为,且(1)求椭圆F的标准方程(2)是否存在定点P,Q,使得为定值.若存在,请求出P、Q的坐标,若不存在,请说明理由22.(10分)已知直线与圆.(1)当直线l恰好平分圆C的周长时,求m的值;(2)当直线l被圆C截得的弦长为时,求m的值.
参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、B【解析】设,过点作的平行线,与平行的半径交于点,找出异面直线与所成角,然后通过解三角形可得出所求角的余弦值.【详解】设,过点作的平行线,与平行的半径交于点,则,,所以为异面直线与所成的角,在三角形中,,,所以.故选:B.【点睛】本题考查异面直线所成角余弦值的计算,一般通过平移直线的方法找到异面直线所成的角,考查计算能力,属于中等题.2、D【解析】根据圆心坐标及半径,即可得到圆的方程.【详解】因为圆心为,半径为,所以圆的方程为:.故选:D.3、D【解析】由,化简得,结合等比数列、等差数列的定义可求解.【详解】由,可得,所以,又由,,所以是首项为,公比为2的等比数列,所以,,,,所以不是等差数列;不等于常数,所以不是等比数列.故选:D.4、B【解析】由题可得当时,,当时,,即得.【详解】∵{an}是以10为首项,-3为公差的等差数列,∴,故当时,,当时,,故时,取得最大值故选:B.5、C【解析】利用几何概型的长度比值,即可计算.【详解】设直角边长,斜边,则线段的长度大于的长度的概率.故选:C6、D【解析】设等比数列公比为,由已知结合等比数列的通项公式可求得,,代入即可求得结果.【详解】设等比数列的公比为,由,得即,又,即又,,解得又等比数列的前3项和为3,故,即,解得故选:D7、C【解析】取中点,连接,证明平面,得证,然后证明平面,得两两垂直,以为棱把三棱锥补成一个正方体,正方体的对角线是其外接球的直径,而正方体的外接球也是正三棱锥的外接球,由此计算可得【详解】取中点,连接,则,,,平面,所以平面,又平面,所以,D、E分别是SA、AB的中点,则,又,所以,,平面,所以平面,而平面,所以,,是正三棱锥,因此,因此可以为棱把三棱锥补成一个正方体,正方体的对角线是其外接球的直径,而正方体的外接球也是正三棱锥的外接球,由,得,所以所求外接球直径为,半径为,球体积为故选:C8、B【解析】根据题意,依次求出,观察规律,进而求出数列的周期,然后通过周期性求得答案.【详解】因为数列满足,,所以,所以,,,可知数列具有周期性,周期为3,,所以.故选:B9、C【解析】由题设写出双曲线的方程,对比系数,求出即可获解【详解】由题知所以双曲线的方程为又由题设的方程为,所以,即设AB的中点为,则由.所以,即圆的半径为2故选:C10、D【解析】根据空间直角坐标系的对称性可得答案.【详解】根据空间直角坐标系的对称性可得关于平面的对称点的坐标为,故选:D.11、D【解析】先求得直线的斜率,由此求得倾斜角.【详解】依题意,直线的斜率为,倾斜角的范围为,则倾斜角为.故选:D.12、A【解析】由题意,从4个数中选出3个数出来全排列即可.【详解】由题意,从4个数中选出3个数出来全排列,共可写出个三位数.故选:A二、填空题:本题共4小题,每小题5分,共20分。13、【解析】由直线的斜率为,得到,即可求解.【详解】由题意,可知直线的斜率为,设直线的倾斜角为,则,解得,即换线的倾斜角为.【点睛】本题主要考查直线的倾斜角的求解问题,其中解答中熟记直线的倾斜角与斜率的关系,合理准确计算是解答的关键,着重考查了运算与求解能力,属于基础题.14、4【解析】根据分别是平面的法向量,且,则有求解.【详解】因为分别是平面的法向量,且所以所以解得故答案为:4【点睛】本题主要考查空间向量垂直,还考查了运算求解的能力,属于基础题.15、【解析】根据互斥事件与对立事件概率公式求解即可【详解】设“2粒都是黑子”为事件,“2粒都是白子”为事件,“2粒恰好是同一色”为事件,“2粒不同色”为事件,则事件与事件是对立事件,所以因为2粒恰好是同一色的概率比不同色的概率大,所以,所以,又,且事件与互斥,所以,所以故答案为:16、15【解析】根据递推公式,依次代入即可求解.【详解】数列满足,当时,可得,当时,可得,当时,可得,故答案为:15.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17、(1)(2)【解析】(1)求,由条件可得,得出关于的方程组,求解可得;(2)令,注意,所以在具有单调性时,则方程无解,求,对分类讨论,求出单调区间,结合函数值的变化趋势,即可求得结论.【详解】解:(1),因为,所以,解得,,所以.(2)令,则.令,则在上单调递增.当,即时,,所以单调递增,又,所以;当,即时,则存在,使得,所以函数在上单调递减,在上单调递增,又,则.当时,,所以在上有解.综上,的取值范围为.【点睛】本题考查导数的几何意义求参数,考查导数的综合应用,涉及到单调区间、函数零点的问题,考查分类讨论思想,属于较难题.18、(1);(2).【解析】(1)根据方程为焦点在轴上的椭圆的条件列不等式组,解不等式组求得的取值范围.(2)求得为真命题时的取值范围,结合是的必要不充分条件列不等式组,解不等式组求得的取值范围.【详解】(1)若是真命题,所以,解得,所以的取值范围是.(2)由(1)得,是真命题时,的取值范围是,为真命题时,,所以的取值范围是因为是的必要不充分条件,所以,所以,等号不同时取得,所以【点睛】本小题主要考查椭圆、双曲线,考查必要不充分条件求参数.19、(1)(2)【解析】(1)根据已知计算双曲线的基本量,得双曲线焦点坐标及渐近线方程,再用点到直线距离公式得解.(2)直线方程代入双曲线方程,得到关于的一元二次方程,运用韦达定理弦长公式列方程得解.【小问1详解】双曲线离心率为,实轴长为2,,,解得,,,所求双曲线C的方程为;∴双曲线C的焦点坐标为,渐近线方程为,即为,∴双曲线焦点到渐近线的距离为.【小问2详解】设,,联立,,,,,,解得20、(1);(2).【解析】(1)先对函数求导,根据题中条件,列出方程组求解,即可得出结果;(2)先由(1)得到,导数的方法研究其单调性,进而可求出最值.【详解】(1)因为,所以,又函数在处取得极值7,,解得;,所以,由得或;由得;满足题意;(2)又,由(1)得在上单调递增,在上单调递减,因此【点睛】方法点睛:该题考查的是有关利用导数研究函数的问题,解题方法如下:(1)先对函数求导,根据题意,结合函数在某个点处取得极值,导数为0,函数值为极值,列出方程组,求得结果;(2)将所求参数代入,得到解析式,利用导数研究其单调性,得到其最大值.21、(1);(2)存在点,使得为定值.【解析】(1)设,,,结合条件即求;(2)由题可设直线方程,利用韦达定理法可得,再结合条件可得点的轨迹方程为,然后利用椭圆的定义即得结论.【小问1详解】设,,,椭圆方程为:,椭圆过点,,解得t=1,所以椭圆F的方程是【小问2详解】由题可得焦点的坐标分别为,当直线AB或CD的斜率不存在时,点M的坐标为或,当直线AB和CD的斜率都存在时,设斜率分别为,点,直线AB为,联立,得则,,同理可得,,因为,所以,化简得由题意,知,所以设点,则,所以,化简得,当直线或的斜率不存在时,点M的坐标为或,也满足此方程所以点在椭圆上,根据椭圆定义可知,存在定点,使得为定值【点睛
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 农业扶持资金合同样本
- 买狗售后合同样本
- 题型05 跨学科实践 2025年会考生物学专题复习(含答案)
- 第15讲 动物的主要类群 2025年会考生物学专题练习(含答案)
- 买卖牲畜合同标准文本
- 公积金贷款担保合同标准文本
- 公司与公司借款合同样本
- 以诚为本促进道德教育的理念计划
- 2025建筑工程项目承包合同范本
- 公司资质升级合同标准文本
- 婴幼儿入户指导方案
- 肾性贫血健康宣教课件
- 呼吸科护士的专业素质与职业道德建设
- 泌尿外科手术分级
- 巨幼细胞贫血诊疗规范2022版
- 影视鉴赏之《当幸福来敲门》
- 施工企业数字化转型实施方案
- 介绍辽宁丹东的PPT模板
- 第六章-社会主义的发展及其规律
- 小学语文实用性学习任务群解读及教学建议
- 81农田农村退水系统有机污染物降解去除关键技术及应用
评论
0/150
提交评论