2019高三数学(人教A版理)一轮课时分层训练62 分类加法计数原理与分步乘法计数原理_第1页
2019高三数学(人教A版理)一轮课时分层训练62 分类加法计数原理与分步乘法计数原理_第2页
2019高三数学(人教A版理)一轮课时分层训练62 分类加法计数原理与分步乘法计数原理_第3页
2019高三数学(人教A版理)一轮课时分层训练62 分类加法计数原理与分步乘法计数原理_第4页
2019高三数学(人教A版理)一轮课时分层训练62 分类加法计数原理与分步乘法计数原理_第5页
全文预览已结束

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

课时分层训练(六十二)分类加法计数原理与分步乘法计数原理(对应学生用书第334页)A组基础达标(建议用时:30分钟)一、选择题1.某局的号码为139××××××××,若前六位固定,最后五位数字是由6或8组成的,则这样的号码的个数为()A.20 B.25C.32 D.60C[依据题意知,后五位数字由6或8组成,可分5步完成,每一步有2种方法,根据分步乘法计数原理,符合题意的号码的个数为25=32.]2.已知两条异面直线a,b上分别有5个点和8个点,则这13个点可以确定不同的平面个数为()A.40 B.16C.13 D.10C[分两类情况:第1类,直线a分别与直线b上的8个点可以确定8个不同的平面;第2类,直线b分别与直线a上的5个点可以确定5个不同的平面.根据分类加法计数原理知,共可以确定8+5=13个不同的平面.]3.在所有的两位数中,个位数字大于十位数字的两位数共有()A.50个 B.45个C.36个 D.35个C[由题意知,十位上的数字可以是1,2,3,4,5,6,7,8,共8类,在每一类中满足题目要求的两位数分别有8个,7个,6个,5个,4个,3个,2个,1个.由分类加法计数原理知,符合题意的两位数共有8+7+6+5+4+3+2+1=36个.]4.从集合{1,2,3,…,10}中任意选出三个不同的数,使这三个数成等比数列,这样的等比数列的个数为()A.3 B.4C.6 D.8D[以1为首项的等比数列为1,2,4;1,3,9.以2为首项的等比数列为2,4,8.以4为首项的等比数列为4,6,9.把这4个数列的顺序颠倒,又得到另外的4个数列,∴所求的数列共有2(2+1+1)=8个.]5.我们把各位数字之和为6的四位数称为“六合数”(如2013是“六合数”),则首位为2的“六合数”共有()【导学号:97190343】A.18个 B.15个C.12个 D.9个B[依题意,这个四位数的百位数、十位数、个位数之和为4.由4、0、0组成3个数分别为400、040、004;由3、1、0组成6个数分别为310、301、130、103、013、031;由2,2、0组成3个数分别为220、202、022;由2、1、1组成3个数分别为211、121、112.共计:3+6+3+3=15(个).]6.如果一个三位正整数“a1a2a3”满足a1<a2,且a2>a3,则称这样的三位数为凸数(如120,343,275等),那么所有凸数的个数为()A.240 B.204C.729 D.920A[若a2=2,则凸数为120与121,共1×2=2个.若a2=3,则凸数有2×3=6个.若a2=4,则凸数有3×4=12个,……,若a2=9,则凸数有8×9=72个.∴所有凸数有2+6+12+20+30+42+56+72=240个.]7.如图10­1­4是一个由四个全等的直角三角形与一个小正方形拼成的大正方形,现在用四种颜色给这四个直角三角形区域涂色,规定每个区域只涂一种颜色,相邻区域颜色不相同,则不同的涂色方法有()图10­1­4A.24种 B.72种C.84种 D.120种C[如图,设四个直角三角形顺次为A,B,C,D,按A→B→C→D顺序涂色,下面分两种情况:(1)A,C不同色(注意:B,D可同色、也可不同色,D只要不与A,C同色,所以D可以从剩余的2种颜色中任意取一色):有4×3×2×2=48(种)不同的涂法.(2)A,C同色(注意:B,D可同色、也可不同色,D只要不与A,C同色,所以D可以从剩余的3种颜色中任意取一色):有4×3×1×3=36(种)不同的涂法.故共有48+36=84(种)不同的涂色方法.故选C.]二、填空题8.有六名同学报名参加三个智力项目,每项限报一人,且每人至多参加一项,则共有________种不同的报名方法.120[每项限报一人,且每人至多参加一项,因此可由项目选人,第一个项目有6种选法,第二个项目有5种选法,第三个项目只有4种选法,由分步乘法计数原理,得共有报名方法6×5×4=120种.]9.从0,1,2,3,4这5个数字中任取3个组成三位数,其中奇数的个数是________.18[从1,3中取一个排个位,故排个位有2种方法;排百位不能是0,可以从另外3个数中取一个,有3种方法;排十位有3种方法.故奇数的个数为3×3×2=18.]10.在连接正八边形的顶点而成的三角形中,与正八边形有公共边的三角形有________个.【导学号:97190344】40[分两类:①有一条公共边的三角形共有8×4=32个;②有两条公共边的三角形共有8个.故共有32+8=40个.]B组能力提升(建议用时:15分钟)11.从集合{1,2,3,4,…,10}中,选出5个数组成子集,使得这5个数中任意两个数的和都不等于11,则这样的子集有()A.32个 B.34个C.36个 D.38个A[将和等于11的放在一组:1和10,2和9,3和8,4和7,5和6.从每一小组中取一个,有Ceq\o\al(1,2)=2种,共有2×2×2×2×2=32个.]12.用数字0,1,2,3,4,5组成没有重复数字的五位数,其中比40000大的偶数共有()A.144个 B.120个C.96个 D.72个B[当万位数字为4时,个位数字从0,2中任选一个,共有2Aeq\o\al(3,4)个偶数;当万位数字为5时,个位数字从0,2,4中任选一个,共有Ceq\o\al(1,3)Aeq\o\al(3,4)个偶数.故符合条件的偶数共有2Aeq\o\al(3,4)+Ceq\o\al(1,3)Aeq\o\al(3,4)=120(个).]13.一个旅游景区的游览线路如图10­1­5所示,某人从P点处进,Q点处出,沿图中线路游览A,B,C三个景点及沿途风景,则不重复(除交汇点O外)的不同游览线路有()图10­1­5A.6种B.8种C.12种D.48种D[从P点处进入结点O以后,游览每一个景点所走环形路线都有2个入口(或2个出口),若先游览完A景点,再进入另外两个景点,最后从Q点处出有(4+4)×2=16种不同的方法;同理,若先游览B景点,有16种不同的方法;若先游览C景点,有16种不同的方法,因而所求的不同游览线路有3×16=48(种).]14.(2018·重庆调研(二))从0,1,2,3,4,5,6,7,8,9这10个数中任取6个不同的数,则这6个数的中位数恰好是eq\f(11,2)的概率为()A.eq\f(1,1050) B.eq\f(1,525)C.eq\f(4,35) D.eq\f(6,35)D[从10个数中任取6个不同的数的取法有Ceq\o\al(6,10)=210种,其中中位数是eq\f(11,2)的取法要分两类:一类以5,6为中间两个数,取法共有Ceq\o\al(2,5)Ceq\o\al(2,3)=30种;另一类以4,7为中间两个数,取法共有Ceq\o\al(2,4)Ceq\o\al(2,2)=6种,则所求概率为eq\f(30+6,210)=eq\f(6,35),故选D.]15.已知△ABC三边a,b,c的长都是整数,且a≤b≤c,如果b=25,则符合条件的三角形共有________个.325[根据三角形的三边关系可知,c<25+a.第一类,当a=1,b=25时,c可取25,共1个;第二类,当a=2,b=25时,c可取25,26,共2个;……当a=25,b=25时,c可取25,26,…,49,共25个.所以符合条件的三角形的个数为1+2+…+25=325.]16.回文数是指从左到右读与从右到左读都一样的正整数.如22,121,3443,94249等.显然2位回文数有9个:11,22,33,…,99;3位回文数有90个:101,111,121,…,191,202,…999.则(1)4位回文数有________个;(

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论