18212矩形的判定-2021-2022学年八年级数学下学期训练(人教版)_第1页
18212矩形的判定-2021-2022学年八年级数学下学期训练(人教版)_第2页
18212矩形的判定-2021-2022学年八年级数学下学期训练(人教版)_第3页
18212矩形的判定-2021-2022学年八年级数学下学期训练(人教版)_第4页
18212矩形的判定-2021-2022学年八年级数学下学期训练(人教版)_第5页
已阅读5页,还剩17页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

§18.2.1.2矩形的判定知识导航矩形的判定:类别判定方法符号语言图形角有一个角是直角的平行四边形是矩形四边形是平行四边形,四边形是矩形有三个角是直角的四边形是矩形四边形是矩形对角线对角线相等的平行四边形是矩形四边形是平行四边形,四边形是矩形重难点突破重点1利用对角线相等的平行四边形是矩形进行判定如图,▱ABCD中,点O是AC与BD的交点,过点O的直线与BA、DC的延长线分别交于点E、F.请连接EC、AF,则EF与AC满足什么条件时,四边形AECF是矩形,并说明理由.【分析】连接EC、AF,则EF与AC满足EF=AC是,四边形AECF是矩形,首先证明四边形AECF是平行四边形,再根据对角线相等的平行四边形为矩形即可证明.【详解】连接EC、AF,则EF与AC满足EF=AC时,四边形AECF是矩形.理由如下:∵四边形ABCD是平行四边形,∴AO=OC,ABCD.∴∠E=∠F又∠AOE=∠COF∴△AOE≌△COF(ASA).∴OE=OF.∵AO=CO,∴四边形AECF是平行四边形.∵EF=AC,∴四边形AECF是矩形.【点睛】本题主要考查了全等三角形的性质与判定、平行四边形的性质以及矩形的判定,首先利用平行四边形的性质构造全等条件,然后利用全等三角形的性质解决问题变式1已知:如图,在中,延长至点,使得,连接,交边于点.连接,.(1)求证:四边形是平行四边形.(2)若,求证:四边形是矩形.【分析】(1)根据题意可得到,从而再证明即可得出结论;(2)结合(1)的结论可以得到,,再根据推出,从而得到,然后根据平行四边形的性质得到AE=BC,由此即可得出结论.【详解】(1)∵四边形是平行四边形,∴,,即,∵,∴,∴四边形是平行四边形;(2)∵四边形是平行四边形,∴,∵,∴当时,则有,∴,又∵四边形ABEC是平行四边形,∴BC=2FC,AE=2FE,,∴四边形是矩形.【点睛】本题考查了平行四边形的性质与判定,矩形的判定等知识点,熟练掌握基本的性质定理以及判定方法是解题关键.重点点拨:在判定矩形时,一定要注意前提条件是四边形还是平行四边形,再考虑用哪条定理,用定义判定或用对角线判定时,前提条件必须是平行四边形,而不能是四边形.重点2重点点拨:在判定矩形时,一定要注意前提条件是四边形还是平行四边形,再考虑用哪条定理,用定义判定或用对角线判定时,前提条件必须是平行四边形,而不能是四边形.如图,在中,,,垂足为,过点作,且,连接,交于点,连接.求证:四边形为矩形;【分析】先证明四边形ADCE是平行四边形,由得到∠ADC=90°,实现解题目标;【详解】∵,,∴BD=DC,∠ADC=90°,∵,且,∴,∴四边形ADCE是平行四边形,∵∠ADC=90°,∴四边形ADCE是矩形;【点睛】本题考查了矩形的判定和性质,平行线的性质,三角形的全等,熟练掌握矩形判定和性质,根据平行线性质灵活证明三角形的全等是解题的关键.变式2如图,在□ABCD中,∠ABD的平分线BE交AD于点E,∠CDB的平分线DF交BC于点F,连接BD.若AB=DB,求证:四边形DFBE是矩形.【分析】根据全等得出AE=CF,根据平行四边形性质得出AD∥BC,AD=BC,推出DE∥BF,DE=BF,得出四边形DFBE是平行四边形,根据等腰三角形性质得出∠DEB=90°,根据矩形的判定推出即可.【详解】∵∠ABD的平分线BE交AD于点E,∴∠ABE=∠ABD,∵∠CDB的平分线DF交BC于点F,∴∠CDF=∠CDB,∵在平行四边形ABCD中,∴AB∥CD,∴∠ABD=∠CDB,∴∠CDF=∠ABE,∵四边形ABCD是平行四边形,∴CD=AB,∠A=∠C,即,∴△ABE≌△CDF(ASA);∵△ABE≌△CDF,∴AE=CF,∵四边形ABCD是平行四边形,∴AD∥BC,AD=BC,∴DE∥BF,DE=BF,∴四边形DFBE是平行四边形,∵AB=DB,BE平分∠ABD,∴BE⊥AD,即∠DEB=90°.∴平行四边形DFBE是矩形.【点睛】本题考点:1.平行四边形的性质和判定,2.矩形的判定,3.全等三角形的性质和判定重点点拨:重点点拨:要判定一个四边形是矩形,通常先判定它是平行四边形,再证明有一个角是直角或对角线相等.重点3利用有三个角是直角的四边形是矩形进行判定如图,在平行四边形ABCD中,E,F为BC上两点,且BE=CF,AF=DE求证:(1)△ABF≌△DCE;(2)四边形ABCD是矩形.【分析】(1)根据等量代换得到BE=CF,根据平行四边形的性质得AB=DC.利用“SSS”得△ABF≌△DCE.(2)平行四边形的性质得到两边平行,从而∠B+∠C=180°.利用全等得∠B=∠C,从而得到一个直角,问题得证.【详解】(1)∵BE=CF,BF=BE+EF,CE=CF+EF,∴BF=CE.∵四边形ABCD是平行四边形,∴AB=DC.在△ABF和△DCE中,∵AB=DC,BF=CE,AF=DE,∴△ABF≌△DCE.(2)∵△ABF≌△DCE,∴∠B=∠C.∵四边形ABCD是平行四边形,∴AB∥CD.∴∠B+∠C=180°.∴∠B=∠C=90°.∴平行四边形ABCD是矩形.【点睛】本题考查的是平行四边形的性质,矩形的判定,掌握以上知识是解题的关键.变式3如图,在四边形ABCD中,对角线AC,BD相交于点O,AO=CO,BO=DO,且∠ABC+∠ADC=180°.(1)求证:四边形ABCD是矩形;(2)若∠ADF:∠FDC=3:2,DF⊥AC,求∠BDF的度数.【分析】(1)先证明四边形ABCD是平行四边形,求出∠ABC=90°,然后根据矩形的判定定理,即可得到结论;(2)求出∠FDC的度数,根据三角形的内角和,求出∠DCO,然后得到OD=OC,得到∠CDO,即可求出∠BDF的度数.【详解】(1)证明:∵AO=CO,BO=DO,∴四边形ABCD是平行四边形,∴∠ABC=∠ADC,∵∠ABC+∠ADC=180°,∴∠ABC=∠ADC=90°,∴四边形ABCD是矩形;(2)解:∵∠ADC=90°,∠ADF:∠FDC=3:2,∴∠FDC=36°,∵DF⊥AC,∴∠DCO=90°﹣36°=54°,∵四边形ABCD是矩形,∴CO=OD,∴∠ODC=∠DCO=54°,∴∠BDF=∠ODC﹣∠FDC=18°.【点睛】本题考查了平行四边形的判定和性质,矩形的判定和性质,能灵活运用定理进行推理是解题的关键.注意:矩形的对角线相等,有一个角是直角的平行四边形是矩形.重点点拨:在一个四边形中如果能够比较容易地证得两个角是直角,可以考虑证明另外两个角中的一个是直角,从而证得该四边形为矩形.难点重点点拨:在一个四边形中如果能够比较容易地证得两个角是直角,可以考虑证明另外两个角中的一个是直角,从而证得该四边形为矩形.如图,在△ABC中,AB=AC,D为BC中点,AE∥BD,且AE=BD.(1)求证:四边形AEBD是矩形;(2)连接CE交AB于点F,若∠ABE=30°,AE=2,求EF的长.【分析】(1)由AE∥BD,且AE=BD可得四边形AEBD是平行四边形,再根据AB=AC,D为BC中点,可知AD⊥BC即可得出四边形AEBD是矩形.(2)根据30°所对的直角边是斜边的一半即可求出EB,再根据矩形的性质求出BC即可利用勾股定理求出EC,由题意可证△AEF∽△BCF,再根据对应边成比例即可求出结果.【详解】(1)证明:∵AE∥BD,AE=BD,∴四边形AEBD是平行四边形,∵AB=AC,D为BC的中点,∴AD⊥BC,∴∠ADB=90°,∴四边形AEBD是矩形.(2)解:∵四边形AEBD是矩形,∴∠AEB=90°,∵∠ABE=30°,AE=2,∴BE=2,BC=4,∴EC=2,∵AE∥BC,∴△AEF∽△BCF,∴,∴EFEC=.【点睛】本题为矩形与等腰三角形的结合题型,关键在于熟练掌握矩形与等腰三角形的性质.变式4在ABCD,过点D作DE⊥AB于点E,点F在边CD上,DF=BE,连接AF,BF.(1)求证:四边形BFDE是矩形;(2)若CF=3,BF=4,DF=5,求证:AF平分∠DAB.【分析】(1)根据平行四边形的性质,可得AB与CD的关系,根据平行四边形的判定,可得BFDE是平行四边形,再根据矩形的判定,即可证明;(2)根据平行线的性质,可得∠DFA=∠FAB,根据等腰三角形的判定与性质,可得∠DAF=∠DFA,根据角平分线的判定,即可证明.【详解】(1)证明:∵四边形ABCD是平行四边形,∴AB∥CD.∵BE∥DF,BE=DF,∴四边形BFDE是平行四边形.∵DE⊥AB,∴∠DEB=90°,∴四边形BFDE是矩形;(2)∵四边形ABCD是平行四边形,∴AB∥DC,∴∠DFA=∠FAB.在Rt△BCF中,由勾股定理,得BC===5,∴AD=BC=DF=5,∴∠DAF=∠DFA,∴∠DAF=∠FAB,即AF平分∠DAB.【点睛】本题考查了平行四边形的性质,矩形的判定,等腰三角形的判定与性质,利用等腰三角形的判定与性质得出∠DAF=∠DFA是解题关键.重点点拨:重点点拨:利用矩形的性质和判定解决问题,一般是先判定一个四边形是矩形,再根据矩形的性质解决其他问题.提升训练▱ABCD中,添加一个条件就成为矩形,则添加的条件是()A.AB=CD B.∠B+∠D=180°C.AC=AD D.对角线互相垂直【答案】B【分析】根据矩形的判定:有一个角是直角的平行四边形是矩形;对角线相等的平行四边形是矩形;由矩形的判定即可得出A、C、D不正确,B正确.【详解】解:A、当AB=CD,不能判定▱ABCD为矩形,故该选项不符合题意;B、∵▱ABCD中,∠B=∠D,∠B+∠D=180°,∴∠B=∠D=90°,∴▱ABCD是矩形;故该选项正确,符合题意;C、∵AC=AD,不能得出▱ABCD是矩形,故该选项不符合题意;D、对角线互相垂直的平行四边形是菱形,故该选项不符合题意.故选:B.【点睛】本题考查了矩形的判定,矩形的判定定理有:(1)有一个角是直角的平行四边形是矩形;(2)有三个角是直角的四边形是矩形;(3)对角线互相平分且相等的四边形是矩形.已知平行四边形ABCD,下列条件中,不能判定这个平行四边形为矩形的是()A.∠A=∠B B.∠A=∠C C.AC=BD D.AB⊥BC【答案】B【分析】由矩形的判定方法依次判断即可得出结果.【详解】解:A、∠A=∠B,∠A+∠B=180°,所以∠A=∠B=90°,可以判定这个平行四边形为矩形,正确;B、∠A=∠C不能判定这个平行四边形为矩形,错误;C、AC=BD,对角线相等,可推出平行四边形ABCD是矩形,故正确;D、AB⊥BC,所以∠B=90°,可以判定这个平行四边形为矩形,正确,故选B.【点睛】本题考查了矩形的判定,熟练掌握“有一个角是直角的平行四边形是矩形、对角线相等的平行四边形是矩形、有三个角是直角的四边形是矩形”是解题的关键.下列命题是假命题的是(

)A.等腰三角形的高线、中线、角平分线互相重合B.同旁内角互补,两直线平行C.角平分线上的点到这个角两边的距离相等D.对角线相等且互相平分的四边形是矩形【答案】A【分析】根据等腰三角形的性质对进行判断;根据平行线的判定方法对进行判断;根据角平分线的性质对进行判断;根据矩形的判断方法对进行判断.【详解】选项,等腰三角形的底边上的高线、中线和顶角的平分线互相重合,故符合题意;选项,同旁内角互补,两直线平行,故不符合题意;选项,角平分线上的点到这个角两边的距离相等,故不符合题意;选项,对角线相等且互相平分的四边形是矩形,故不符合题意;故选:.【点睛】本题考查了命题与定理、等腰三角形的性质、平行线的性质、角平分线的性质、矩形的判定等知识,解答本题的关键是熟练掌握并运用以上知识.如图,矩形ABCD中,对角线AC、BD相交于点O,过点O作OE⊥BD交AD于点E.已知AB=2,△DOE的面积为,则AE的长为()A. B.2 C.1.5 D.【答案】C【分析】连接BE,由题意可得OE为对角线BD的垂直平分线,可得BE=DE,S△BOE=S△DOE=,由三角形的面积则可求得DE的长,得出BE的长,然后由勾股定理求得答案.【详解】连接BE,如图所示:由题意可得,OE为对角线BD的垂直平分线,∴BE=DE,S△BOE=S△DOE=,∴S△BDE=2S△BOE=.∴DE•AB=,又∵AB=2,∴DE=,∴BE=在Rt△ABE中,由勾股定理得:AE=.故选C.【点睛】此题考查了矩形的性质、勾股定理以及三角形的面积问题.此题难度适中,注意掌握辅助线的作法,注意掌握数形结合思想的应用.矩形与矩形如图放置,点共线,共线,连接,取的中点,连接,若,,则(

)A. B. C.2 D.【答案】A【分析】如图,延长GH交AD于点M,先证明△AHM≌△FHG,从而可得AM=FG=1,HM=HG,进而得DM=ADAM=2,继而根据勾股定理求出GM的长即可求得答案.【详解】如图,延长GH交AD于点M,∵四边形ABCD、CEFG是矩形,∴AD=BC=3,CG=EF=3,FG=CE=1,∠CGF=90°,∠ADC=90°,∴DG=CGCD=31=2,∠ADG=90°=∠CGF,∴AD//FG,∴∠HAM=∠HFG,∠AMH=∠FGH,又AH=FH,∴△AHM≌△FHG,∴AM=FG=1,HM=HG,∴DM=ADAM=31=2,∴GM=,∵GM=HM+HG,∴GH=,故选A.【点睛】本题考查了矩形的性质,勾股定理,全等三角形的判定与性质,正确添加辅助线,熟练掌握相关知识是解题的关键.如图,点为矩形的边上的点,于点,且,下列结论不正确的是(

)A.平分 B.为等腰三角形C. D.【答案】C【分析】根据矩形的性质及HL定理证明Rt△DEF≌Rt△DEC,然后利用全等三角形的性质进行推理判断【详解】解:在矩形ABCD中,∠C=90°,AB=CD∵于点,且∴∠DFE=∠C=90°,DF=CD在Rt△DEF和Rt△DEC中∴Rt△DEF≌Rt△DEC∴∠FDE=∠CDE,即平分,故A选项不符合题意;∵Rt△DEF≌Rt△DEC∴∠FED=∠CED又∵矩形ABCD中,AD∥BC∴∠ADE=∠CED∴∠FED=∠ADE∴AD=AE,即为等腰三角形,故B选项不符合题意∵Rt△DEF≌Rt△DEC∴EF=EC在矩形ABCD中,AD=BC,又∵AD=AE∴AE=AD=BC=BE+EC=BE+EF,故D选项不符合题意由于AB=CD=DF,但在Rt△ADF中,无法证得AF=DF,故无法证得AB=AF,故C选项符合题意故选:C.【点睛】本题考查矩形的性质及三角形全等的判定和性质,掌握相关性质定理正确推理论证是解题关键.如图,在矩形中,,,动点满足,则点到、两点距离之和的最小值为(

)A. B. C. D.【答案】D【分析】由,可得△PAB的AB边上的高h=2,表明点P在平行于AB的直线EF上运动,且两平行线间的距离为2;延长FC到G,使FC=CG,连接AG交EF于点H,则点P与H重合时,PA+PB最小,在Rt△GBA中,由勾股定理即可求得AG的长,从而求得PA+PB的最小值.【详解】解:设△PAB的AB边上的高为h∵∴∴h=2表明点P在平行于AB的直线EF上运动,且两平行线间的距离为2,如图所示∴BF=2∵四边形ABCD为矩形∴BC=AD=3,∠ABC=90゜∴FC=BCBF=32=1延长FC到G,使CG=FC=1,连接AG交EF于点H∴BF=FG=2∵EF∥AB∴∠EFG=∠ABC=90゜∴EF是线段BG的垂直平分线∴PG=PB∵PA+PB=PA+PG≥AG∴当点P与点H重合时,PA+PB取得最小值AG在Rt△GBA中,AB=5,BG=2BF=4,由勾股定理得:即PA+PB的最小值为故选:D.【点睛】本题是求两条线段和的最小值问题,考查了矩形的性质,勾股定理,线段垂直平分线的性质、两点之间线段最短等知识,难点在于确定点P运动的路径,路径确定后就是典型的将军饮马问题.在中,请加一个条件:________可以判定是矩形.【答案】【分析】根据矩形的判定方法,即可求解.【详解】∵四边形为平行四边形,对角线相等的平行四边形为矩形,当时,可得为矩形故答案为(答案不唯一)【点睛】此题考查了矩形的判定方法,掌握矩形的判定方法是解题的关键.如图,矩形ABCD中,已知AB=6,BC=8,BD的垂直平分线交AD于点E,交BC于点F,则△BOF的面积为____.【答案】【分析】根据矩形的性质和勾股定理求出BD,证明△BOF∽△BCD,根据相似三角形的性质得到比例式,求出BF,根据勾股定理求出OF,根据三角形的面积公式计算即可.【详解】解:∵四边形ABCD是矩形,∴∠A=90°,又AB=6,AD=BC=8,∴根据勾股定理可得:BD=10,∵EF是BD的垂直平分线,∴OB=OD=5,∠BOF=90°,又∠C=90°,∴△BOF∽△BCD,∴,即,解得,BF=,则OF=,则△BOF的面积=×OF×OB=,【点睛】(1)矩形的性质;(2)线段垂直平分线的性质;(3)勾股定理的应用如图,过矩形ABCD的对角线BD上一点K分别作矩形两边的平行线MN与PQ,那么图中矩形AMKP的面积S1与矩形QCNK的面积S2的大小关系是S1_____S2;(填“>”或“<”或“=”)【答案】=【分析】利用矩形的性质可得△ABD的面积=△CDB的面积,△MBK的面积=△QKB的面积,△PKD的面积=△NDK的面积,进而求出答案.【详解】∵四边形ABCD是矩形,四边形MBQK是矩形,四边形PKND是矩形,∴△ABD的面积=△CDB的面积,△MBK的面积=△QKB的面积,△PKD的面积=△NDK的面积,∴△ABD的面积﹣△MBK的面积﹣△PKD的面积=△CDB的面积﹣△QKB的面积=△NDK的面积,∴S1=S2.故答案为=.【点睛】本题考查了矩形的性质,熟练掌握矩形的性质定理是解题关键.如图,在Rt△ABC中,∠BAC=90°,且BA=9,AC=12,点D是斜边BC上的一个动点,过点D分别作DE⊥AB于点E,DF⊥AC于点F,点G为四边形DEAF对角线交点,则线段GF的最小值为_______.【答案】【分析】由勾股定理求出BC的长,再证明四边形DEAF是矩形,可得EF=AD,根据垂线段最短和三角形面积即可解决问题.【详解】解:∵∠BAC=90°,且BA=9,AC=12,∴在Rt△ABC中,利用勾股定理得:BC===15,∵DE⊥AB,DF⊥AC,∠BAC=90°∴∠DEA=∠DFA=∠BAC=90°,∴四边形DEAF是矩形,∴EF=AD,GF=EF∴当AD⊥BC时,AD的值最小,此时,△ABC的面积=AB×AC=BC×AD,∴AD===,∴EF=AD=,因此EF的最小值为;又∵GF=EF∴GF=×=故答案为:.【点睛】本题考查了矩形的判定和性质、勾股定理、三角形面积、垂线段最短等知识,解题的关键是熟练掌握基本知识,属于中考常考题型.如图,在矩形中,,过矩形的对角线交点作直线分别交、于点,连接,若是等腰三角形,则____.【答案】或【分析】连接AC,由矩形的性质得出∠B=90°,AD=BC=6,OA=OC,AD∥BC,由ASA证明△AOE≌△COF,得出AE=CF,若△AEF是等腰三角形,分三种情讨论:①当AE=AF时,设AE=AF=CF=x,则BF=6x,在Rt△ABF中,由勾股定理得出方程,解方程即可;②当AF=EF时,作FG⊥AE于G,则AG=AE=BF,设AE=CF=x,则BF=6x,AG=x,得出方程x=6x,解方程即可;③当AE=FE时,作EH⊥BC于H,设AE=FE=CF=x,则BF=6x,CH=DE=6x,求出FH=CFCH=2x6,在Rt△EFH中,由勾股定理得出方程,方程无解;即可得出答案.【详解】解:连接AC,如图1所示:∵四边形ABCD是矩形,∴∠B=90°,AD=BC=6,OA=OC,AD∥BC,∴∠OAE=∠OCF,在△AOE和△COF中,,∴△AOE≌△COF(ASA),∴AE=CF,若△AEF是等腰三角形,分三种情讨论:①当AE=AF时,如图1所示:设AE=AF=CF=x,则BF=6x,在Rt△ABF中,由勾股定理得:42+(6x)2=x2,解得:x=,即AE=;②当AF=EF时,作FG⊥AE于G,如图2所示:则AG=AE=BF,设AE=CF=x,则BF=6x,AG=x,所以x=6x,解得:x=4;③当AE=FE时,作EH⊥BC于H,如图3所示:设AE=FE=CF=x,则BF=6x,CH=DE=6x,∴FH=CFCH=x(6x)=2x6,在Rt△EFH中,由勾股定理得:42+(2x6)2=x2,整理得:3x224x+52=0,∵△=(24)24×3×52<0,∴此方程无解;综上所述:△AEF是等腰三角形,则AE为或4;故答案为或4.【点睛】本题考查了矩形的性质、全等三角形的判定与性质、勾股定理、解方程、等腰三角形的性质、分类讨论等知识;根据勾股定理得出方程是解决问题的关键,注意分类讨论.如图,四边形ABCD中,AB=CD,AD=BC,对角线AC,BD相交于点O,且OA=OD.求证:四边形ABCD是矩形.【分析】先由两组对边分别相等证明四边形ABCD是平行四边形,再根据对角线相等的平行四边形是矩形证明即可.【详解】证:∵四边形ABCD中,AB=CD,AD=BC,∴四边形ABCD是平行四边形,∴AC=2AO,BD=2OD,∵OA

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论