版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
学校________________班级____________姓名____________考场____________准考证号学校________________班级____________姓名____________考场____________准考证号…………密…………封…………线…………内…………不…………要…………答…………题…………第1页,共7页江苏省江阴市长寿中学2024年九上数学开学联考模拟试题题号一二三四五总分得分批阅人A卷(100分)一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)1、(4分)若一组数据2,3,,5,7的众数为7,则这组数据的中位数为()A.2 B.3 C.5 D.72、(4分)矩形的边长是,一条对角线的长是,则矩形的面积是()A. B. C.. D.3、(4分)下列数据中不能作为直角三角形的三边长的是()A.1,,2 B.7,24,25 C.. D.1,,4、(4分)已知A(1,y1)、B(2,y2)、C(-3,y3)都在反比例函数y=的图象上,则y1、y2、y3的大小关系的是()A.y2>y1>y3 B.y1>y2>y3 C.y3>y2>y1 D.y1>y3>y25、(4分)如图,在▱ABCD中,AB=3,BC=5,AC的垂直平分线交AD于E,则△CDE的周长是()A.8 B.6 C.9 D.106、(4分)一元二次方程配方后可化为()A. B. C. D.7、(4分)若与|x﹣y﹣3|互为相反数,则x+y的值为()A.3 B.9 C.12 D.278、(4分)下列图形中,不是中心对称图形的是()A. B. C. D.二、填空题(本大题共5个小题,每小题4分,共20分)9、(4分)如图,点是的对称中心,,是边上的点,且是边上的点,且,若分别表示和的面积则.10、(4分)如图,有公共顶点A、B的正五边形和正六边形,连接AC交正六边形于点D,则∠ADE的度数为___.11、(4分)若α是锐角且sinα=,则α的度数是.12、(4分)已知m是一元二次方程的一个根,则代数式的值是_____13、(4分)如图,矩形的边分别在轴、轴上,点的坐标为。点分别在边上,。沿直线将翻折,点落在点处。则点的坐标为__________。三、解答题(本大题共5个小题,共48分)14、(12分)小芳和弟弟小东分别从家和图书馆同时出发,沿同一条路相向而行,小芳开始跑步中途改为步行.达到图书馆恰好用,小东骑自行车以的速度直接回家,两个离家的路程与各自离开出发地的时间之间的函数图象如图所示.(1)家与图书馆之间的路程为,小芳步行的速度为;(2)求小东离家的路程关于的函数解析式,并写出自变量的取值范围;(3)求两人相遇的时间15、(8分)在Rt△ABC中,∠BAC=90°,D是BC的中点,E是AD的中点,过点A作AF∥BC交BE的延长线于点F,连接CF.(1)求证:AF=BD.(2)求证:四边形ADCF是菱形.16、(8分)观摩、学习是我们生活的一部分,而在观摩中与展览品保持一定的距离是一种文明的表现.某学校数学业余学习小组在平面直角坐标系xOy有关研讨中,将到线段PQ所在的直线距离为的直线,称为直线PQ的“观察线”,并称观察线上到P、Q两点距离和最小的点L为线段PQ的“最佳观察点”.(1)如果P(1,),Q(4,),那么在点A(1,0),B(,2),C(,3)中,处在直线PQ的“观察线”上的是点;(2)求直线y=x的“观察线”的表达式;(3)若M(0,﹣1),N在第二象限,且MN=6,当MN的一个“最佳观察点”在y轴正半轴上时,直接写出点N的坐标;并按逆时针方向联结M、N及其所有“最佳观察点”,直接写出联结所围成的多边形的周长和面积.17、(10分)如图,在中,点在边上,点在边的延长线上,且,与交于点.(1)求证:;(2)若点是的中点,,求边的长.18、(10分)在矩形ABCD中,BE平分∠ABC交CD边于点E.点F在BC边上,且FE⊥AE.(1)如图1,①∠BEC=_________°;②在图1已有的三角形中,找到一对全等的三角形,并证明你的结论;(2)如图2,FH∥CD交AD于点H,交BE于点M.NH∥BE,NB∥HE,连接NE.若AB=4,AH=2,求NE的长.B卷(50分)一、填空题(本大题共5个小题,每小题4分,共20分)19、(4分)如图,在平面直角坐标系中直线y=−x+10与x轴,y轴分别交于A.B两点,C是OB的中点,D是线段AB上一点,若CD=OC,则点D的坐标为___20、(4分)在矩形ABCD中,AB=2,AD=3,点P是BC上的一个动点,连接AP、DP,则AP+DP的最小值为_____.21、(4分)对分式和进行通分,它们的最简公分母是________.22、(4分)如图,在中,,,,为的中点,则______.23、(4分)现有四根长,,,的木棒,任取其中的三根,首尾顺次相连后,能组成三角形的概率为______.二、解答题(本大题共3个小题,共30分)24、(8分)如图,在四边形中,、、、分别是、、、的中点,.求证:.25、(10分)八年级(1)班同学为了解某小区家庭月均用水情况,随机调査了该小区部分家庭,并将调查数据整理成如下两幅不完整的统计图表:月均用水量x(t)频数(户)频率0<x≤560.125<x≤10m0.2410<x≤15160.3215<x≤20100.2020<x≤254n25<x≤3020.04请根据以上信息,解答以下问题:(1)直接写出频数分布表中的m、n的值并把频数直方图补充完整;(2)求出该班调查的家庭总户数是多少?(3)求该小区用水量不超过15的家庭的频率.26、(12分)如图,四边形ABCD中,AB=AD=2,BC=3,CD=1,∠A=90°,请问△BCD是直角三角形吗?请说明你的理由.
参考答案与详细解析一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)1、C【解析】试题解析:∵这组数据的众数为7,∴x=7,则这组数据按照从小到大的顺序排列为:2,3,1,7,7,中位数为:1.故选C.考点:众数;中位数.2、C【解析】
根据勾股定理求出矩形的另一条边的长度,即可求出矩形的面积.【详解】由题意及勾股定理得矩形另一条边为==4所以矩形的面积=44=16.故答案选C.本题考查的知识点是勾股定理,解题的关键是熟练的掌握勾股定理.3、C【解析】
根据勾股定理的逆定理:如果三角形有两边的平方和等于第三边的平方,那么这个三角形是直角三角形.如果没有这种关系,这个就不是直角三角形.【详解】解:A.,符合勾股定理的逆定理,故不符合题意;
B.72+242=252,符合勾股定理的逆定理,故不符合题意;
C.,不符合勾股定理的逆定理,故符合题意;
D.,符合勾股定理的逆定理,故不符合题意.
故选:C.本题考查了勾股定理的逆定理,在应用勾股定理的逆定理时,应先认真分析所给边的大小关系,确定最大边后,再验证两条较小边的平方和与最大边的平方之间的关系,进而作出判断.4、B【解析】
解:根据函数的解析式可得:,=1,,则故选:B.本题考查反比例函数的性质,正确计算是解题关键.5、A【解析】
由AC的垂直平分线交AD于E,易证得AE=CE,又由四边形ABCD是平行四边形,即可求得AD与DC的长,继而求得答案【详解】∵AC的垂直平分线交AD于E,∴AE=CE,∵四边形ABCD是平行四边形,∴CD=AB=3,AD=BC=5,∴△CDE的周长是:DC+DE+CE=DC+DE+AE=DC+AD=3+5=8,故选A.此题考查线段垂直平分线的性质,平行四边形的性质,解题关键在于得到AE=CE6、D【解析】
配方法的一般步骤:(1)把常数项移到等号的右边;(2)把二次项的系数化为1;(3)等式两边同时加上一次项系数一半的平方.【详解】解:故选:D.本题考查一元二次方程的配方法,解题的关键是熟练运用配方法,本题属于基础题型.7、D【解析】依题意得.∴x+y=27.故选D.8、B【解析】
解:A、是中心对称图形,故本选项错误;B、不是中心对称图形,故本选项正确;C、是中心对称图形,故本选项错误;D、是中心对称图形,故本选项错误;故选B.二、填空题(本大题共5个小题,每小题4分,共20分)9、【解析】
根据同高的两个三角形面积之比等于底边之比得出再由点O是▱ABCD的对称中心,根据平行四边形的性质可得S△AOB=S△BOC=,从而得出S1与S2之间的等量关系.【详解】解:由题意可得∵点O是▱ABCD的对称中心,∴S△AOB=S△BOC=,故答案为:本题考查了中心对称,三角形的面积,平行四边形的性质,根据同高的两个三角形面积之比等于底边之比得出是解题的关键.10、84°.【解析】
据正多边形的内角,可得∠ABE、∠E、∠CAB,根据四边形的内角和,可得答案.【详解】正五边形的内角是∠ABC==108°,∵AB=BC,∴∠CAB=36°,正六边形的内角是∠ABE=∠E==120°,∵∠ADE+∠E+∠ABE+∠CAB=360°,∴∠ADE=360°﹣120°﹣120°﹣36°=84°,故答案为84°.本题考查了多边形的内角与外角,利用求多边形的内角得出正五边形的内角、正六边形的内角是解题关键.11、60°【解析】试题分析:由α是锐角且sinα=,可得∠α=60°.考点:特殊角的三角函数值12、.【解析】
把代入方程,得出关于的一元二次方程,再整体代入.【详解】当时,方程为,即,所以,.故答案为:.本题考查的是一元二次方程解的定义.能使方程成立的未知数的值,就是方程的解,同时,考查了整体代入的思想.13、【解析】
由四边形OABC是矩形,BE=BD=1,易得△BED是等腰直角三角形,由折叠的性质,易得∠BEB′=∠BDB′=90°,又由点B的坐标为(3,2),即可求得点B′的坐标.【详解】∵四边形OABC是矩形,∴∠B=90°,∵BD=BE=1,∴∠BED=∠BDE=45°,∵沿直线DE将△BDE翻折,点B落在点B′处,∴∠B′ED=∠BED=45°,∠B′DE=∠BDE=45°,B′E=BE=1,B′D=BD=1,∴∠BEB′=∠BDB′=90°,∵点B的坐标为(3,2),∴点B′的坐标为(2,1).故答案为:(2,1).此题考查翻折变换(折叠问题),坐标与图形性质,解题关键在于得到△BED是等腰直角三角形三、解答题(本大题共5个小题,共48分)14、(1)4000,100;(2),自变量的范围为;(3)两人相遇时间第8分钟.【解析】
(1)认真分析图象得到路程与速度数据;
(2)采用方程思想列出小东离家路程y与时间x之间的函数关系式;
(3)两人相遇实际上是函数图象求交点.【详解】(1)由图象可得:家与图书馆之间的路程为4000米,小芳步行的速度为(2)∵小东骑自行车以的速度直接回家∴他离家的路程自变量的范围为(3)由图像可知,两人相遇是在小玲改变速度之前解得两人相遇时间第8分钟.本题是一次函数实际应用问题,考查了对一次函数图象代表意义的分析和从方程角度解决一次函数问题.15、(1)见解析;(2)见解析.【解析】
(1)由“AAS”可证△AFE≌△DBE,从而得AF=BD(2)由一组对边平行且相等的四边形是平行四边形,可得四边形ADCF是平行四边形,由直角三角形的性质的AD=DC,即可证明四边形ADCF是菱形。【详解】(1)∵AF∥BC,∴∠AFE=∠DBE∵△ABC是直角三角形,AD是BC边上的中线,E是AD的中点,∴AE=DE,BD=CD在△AFE和△DBE中,∠AFE=∴△AFE≌△DBE(AAS))∴AF=BD(2)由(1)知,AF=BD,且BD=CD,∴AF=CD,且AF∥BC,∴四边形ADCF是平行四边形∵∠BAC=90°,D是BC的中点,∴AD=12BC=∴四边形ADCF是菱形本题考查了菱形的判定、全等三角形的判定与性质、直角三角形的性质。证明AD=DC是解题的关键。16、(1)A,B;(1)直线y=x的“观察线”的解析式为y=x﹣1或y=x+1;(3)围成的图形是菱形MQNQ′,这个菱形的周长8,这个菱形的面积6.【解析】
(1)由题意线段PQ的“观察线”的解析式为y=0或y=1,由此即可判断;
(1)如图1中,设直线的下方的“观察线”MN交y轴于K,作KE⊥直线,求出直线MN的解析式,再根据对称性求出直线的上方的“观察线”PQ即可;
(3)如图3中,设点Q是MN的一个“最佳观察点”,点P是MN的中点.解直角三角形求出点P坐标,再根据中点坐标公式求出等N坐标;观察图象可知:设此时的另一个“最佳观察点”为Q′,按逆时针方向联结M、N及其所有“最佳观察点”,所围成的图形是菱形MQNQ′,这个菱形的周长=8,这个菱形的面积==×6×1=6.【详解】(1)如图1中,由题意线段PQ的“观察线”的解析式为y=0或y=1,∵点A在直线y=0上,点B在直线y=1上,∴点A,点B是直线PQ的“观察线”上的点,故答案为A,B.(1)如图1中,设直线y=x的下方的“观察线”MN交y轴于K,作KE⊥直线y=x,由题意:EK=,∵直线y=x与x轴的夹角为30°,∴∠EOK=60°,∴∠EKO=30°,∴tan30°==,∴OE=1,∴OK=1OE=1,∵MN∥直线y=x,∴直线MN的解析式为y=x﹣1,根据对称性可知在直线y=x上方的“观察线”PQ的解析式为y=x+1.综上所述,直线y=x的“观察线”的解析式为y=x﹣1或y=x+1.(3)如图3中,设点Q是MN的一个“最佳观察点”,点P是MN的中点.当点Q在y轴的正半轴上时,连接PQ,则PQ垂直平分线线段MN.在Rt△PQM中,PQ=,PM=3,∴MQ==1,∵M(0,﹣1),OQ=1﹣1,作PH⊥y轴于H.在Rt△PQH中,∵tan∠PQH==,∴∠PQH=60°,∴∠QPH=30°,∴QH=PQ=,PH=QH=,∴OH=1﹣1﹣=﹣1,∴P(﹣,﹣1),∵PN=PM,∴N(﹣3,3﹣1).观察图象可知:设此时的另一个“最佳观察点”为Q′,按逆时针方向联结M、N及其所有“最佳观察点”,所围成的图形是菱形MQNQ′,这个菱形的周=8,这个菱形的面积=×6×1=6.本题考查一次函数综合题、点到直线的距离、轨迹、解直角三角形等知识,解题的关键是理解题意,学会用分类讨论的思想思考问题,学会添加常用辅助线,构造直角三角形解决问题.17、(1)证明见解析;(2)AD=12.【解析】
(1)根据平行四边的判定与性质,可得答案;
(2)根据AAS证明△AGF≌△BGE,再根据全等三角形的性质与平行四边形的性质即可求解.【详解】(1)证明:∵四边形是平行四边形,∴,∵,∴四边形是平行四边形,∴;(2)解:∵,∴,∵点是的中点,∴,在与中,,∴,∴,∵,∴,∵四边形是平行四边形,∴.本题考查了平行四边形的判定与性质,全等三角形的判定与性质,关键是证明△AGF≌△BGE.18、(1)①45;②△ADE≌△ECF,理由见解析;(2)2.【解析】
(1)①根据矩形的性质得到,根据角平分线的定义得到,根据三角形内角和定理计算即可;②利用定理证明;(2)连接,证明四边形是矩形,得到,根据勾股定理求出即可.【详解】(1)①∵四边形ABCD为矩形,∴∠ABC=∠BCD=90°,∵BE平分∠ABC,∴∠EBC=45°,∴∠BEC=45°,故答案为45;②△ADE≌△ECF,理由如下:∵四边形ABCD是矩形,∴∠ABC=∠C=∠D=90°,AD=BC.∵FE⊥AE,∴∠AEF=90°.∴∠AED+∠FEC=180°-∠AEF=90°.∵∠AED+∠DAE=90°,∴∠FEC=∠EAD,∵BE平分∠ABC,∴∠BEC=45°.∴∠EBC=∠BEC.∴BC=EC.∴AD=EC.在△ADE和△ECF中,,∴△ADE≌△ECF;(2)连接HB,如图2,∵FH∥CD,∴∠HFC=180°-∠C=90°.∴四边形HFCD是矩形.∴DH=CF,∵△ADE≌△ECF,∴DE=CF.∴DH=DE.∴∠DHE=∠DEH=45°.∵∠BEC=45°,∴∠HEB=180°-∠DEH-∠BEC=90°.∵NH∥BE,NB∥HE,∴四边形NBEH是平行四边形.∴四边形NBEH是矩形.∴NE=BH.∵四边形ABCD是矩形,∴∠BAH=90°.∵在Rt△BAH中,AB=4,AH=2,本题考查的是矩形的判定和性质、全等三角形的判定和性质以及勾股定理的应用,掌握全等三角形的判定定理和性质定理是解题的关键.一、填空题(本大题共5个小题,每小题4分,共20分)19、(4,8)【解析】
由解析式求得B的坐标,加入求得C的坐标,OC=5,设D(x,-x+10),根据勾股定理得出x+(x-5)=25,解得x=4,即可求得D的坐标.【详解】由直线y=−x+10可知:B(0,10),∴OB=10,∵C是OB的中点,∴C(0,5),OC=5,∵CD=OC,∴CD=5,∵D是线段AB上一点,∴设D(x,-x+10),∴CD=∴解得x=4,x=0(舍去)∴D(4,8),故答案为:(4,8)此题考查一次函数与平面直角坐标系,勾股定理,解题关键在于利用勾股定理进行计算20、1【解析】
作点D关于BC的对称点D',连接AD',PD',依据AP+DP=AP+PD'≥AD',即可得到AP+DP的最小值等于AD'的长,利用勾股定理求得AD'=1,即可得到AP+DP的最小值为1.【详解】解:如图,作点D关于BC的对称点D',连接AD',PD',则DD'=2DC=2AB=4,PD=PD',∵AP+DP=AP+PD'≥AD',∴AP+DP的最小值等于AD'的长,∵Rt△ADD'中,AD'===1,∴AP+DP的最小值为1,故答案为:1.本题考查的是最短线路问题及矩形的性质,熟知两点之间线段最短的知识是解答此题的关键.21、【解析】
根据确定最简公分母的方法是:(1)取各分母系数的最小公倍数;(2)凡单独出现的字母连同它的指数作为最简公分母的一个因式;(3)同底数幂取次数最高的,得到的因式的积就是最简公分母即可得出答案.【详解】解:分式和的最简公分母是,故答案为:.本题考查了最简公分母的定义:通常取各分母系数的最小公倍数与字母因式的最高次幂的积作公分母,这样的公分母叫做最简公分母.通分的关键是准确求出各个分式中分母的最简公分母,确定最简公分母的方法一定要掌握.22、【解析】
根据勾股定理以及直角三角形斜边上的中线性质即可求出答案.【详解】∵∠ABC=90°,BC=4cm,AB=3cm,
∴由勾股定理可知:AC=5cm,
∵点D为AC的中点,
∴BD=AC=cm,
故答案为:本题考查勾股定理,解题的关键是熟练运用勾股定理以及直角三角形斜边上的中线的性质,本题属于基础题型.23、【解析】
先展示所有可能的结果数,再根据三角形三边的关系得到能组成三角形的结果数,然后根据概率公式求解.【详解】解:∵现有四根长30cm、40cm、70cm、90cm的木棒,任取其中的三根,可能结果有:30cm、40cm、70cm;30cm、40cm、90cm;30cm、70cm、90cm;40cm、70cm、90cm;其中首尾相连后,能
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 艺术与社会责任研究-洞察分析
- 系统安全性分析-洞察分析
- 心搏骤停急救设备研发-洞察分析
- 虚拟现实与旅游文化体验-洞察分析
- 南宁市三好学生主要事迹(8篇)
- 虚拟现实技术在游乐园的应用-洞察分析
- 体育用品零售市场现状分析-洞察分析
- 原子分子反应动力学-洞察分析
- 天然气水合物形成机制及其资源评价研究-洞察分析
- 胸部疾病影像智能识别-洞察分析
- 信息安全意识培训课件
- Python试题库(附参考答案)
- 攀岩智慧树知到期末考试答案章节答案2024年华中农业大学
- 饮食的健康哲学智慧树知到期末考试答案章节答案2024年青岛大学
- MOOC 理解马克思-南京大学 中国大学慕课答案
- 特种设备日常运行记录表(共4页)
- 部编本语文八年级上全册文言文课下注释
- 十二种健康教育印刷资料
- RTO处理工艺PFD计算
- 凯旋帝景地产杯篮球争霸赛方案
- 烟草专卖(公司)内部专卖管理监督工作制度
评论
0/150
提交评论