怀化市重点中学2024-2025学年九上数学开学学业水平测试试题【含答案】_第1页
怀化市重点中学2024-2025学年九上数学开学学业水平测试试题【含答案】_第2页
怀化市重点中学2024-2025学年九上数学开学学业水平测试试题【含答案】_第3页
怀化市重点中学2024-2025学年九上数学开学学业水平测试试题【含答案】_第4页
怀化市重点中学2024-2025学年九上数学开学学业水平测试试题【含答案】_第5页
已阅读5页,还剩17页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

学校________________班级____________姓名____________考场____________准考证号学校________________班级____________姓名____________考场____________准考证号…………密…………封…………线…………内…………不…………要…………答…………题…………第1页,共5页怀化市重点中学2024-2025学年九上数学开学学业水平测试试题题号一二三四五总分得分A卷(100分)一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)1、(4分)为了贯彻总书记提出的“精准扶贫”战略构想,铜仁市2017年共扶贫261800人,将261800用科学记数法表示为()A.2.618×105 B.26.18×104 C.0.2618×106 D.2.618×1062、(4分)甲、乙两人在笔直的湖边公路上同起点、同终点、同方向匀速步行2400米,先到终点的人原地休息.已知甲先出发4分钟.在整个步行过程中,甲、乙两人的距离(米)与甲出发的时间(分)之间的关系如图所示,下列结论:①甲步行的速度为60米/分;②乙用16分钟追上甲;③乙走完全程用了30分钟;④乙到达终点时甲离终点还有360米.其中正确的结论有()A.1个 B.2个 C.3个 D.4个3、(4分)将分式中的,的值同时扩大为原来的2019倍,则变化后分式的值()A.扩大为原来的2019倍 B.缩小为原来的C.保持不变 D.以上都不正确4、(4分)观察下列命题:(1)如果a<0,b>0,那么a+b<0;(2)如果两个三角形的3个角对应相等,那么这两个三角形全等;(3)同角的补角相等;(4)直角都相等.其中真命题的个数是().A.0 B.1 C.2 D.35、(4分)如图,已知一次函数的图象与轴,轴分别交于点(2,0),点(0,3).有下列结论:①关于的方程的解为;②当时,;③当时,.其中正确的是()A.①② B.①③ C.②③ D.①③②6、(4分)如图,在三角形ABC中,∠C=90∘,AD平分∠BAC交BC于点D,且BD=2CD,BC=6cm,则点D到A.4cm B.3cm C.2cm D.1cm7、(4分)点P(2,﹣3)关于y轴的对称点的坐标是()A.(2,3) B.(﹣2,﹣3) C.(﹣2,3) D.(﹣3,2)8、(4分)下列说法正确的是()A.明天的天气阴是确定事件B.了解本校八年级(2)班学生课外阅读情况适合作抽查C.任意打开八年级下册数学教科书,正好是第5页是不可能事件D.为了解高港区262846人的体质情况,抽查了5000人的体质情况进行统计分析,样本容量是5000二、填空题(本大题共5个小题,每小题4分,共20分)9、(4分)如图,一直线与两坐标轴的正半轴分别交于A,B两点,P是线段AB上任意一点(不包括端点),过P分别作两坐标轴的垂线与两坐标轴围成的矩形的周长为10,则该直线的函数表达式是__.10、(4分)一元二次方程的一次项系数为_________.11、(4分)往如图所示的地板中随意抛一颗石子(石子看作一个点),石子落在阴影区域的概率为___________12、(4分)已知一组数据1,2,0,﹣1,x,1的平均数是1,则这组数据的中位数为_____.13、(4分)一个多边形的内角和等于1800°,它是______边形.三、解答题(本大题共5个小题,共48分)14、(12分)某学校为了了解男生的体能情况,规定参加测试的每名男生从“实心球”,“立定跳远”,“引体向上”,“耐久跑1000米”四个项目中随机抽取一项作为测试项目.(1)八年(1)班的25名男生积极参加,参加各项测试项目的统计结果如图,参加“实心球”测试的男生人数是人;(2)八年(1)班有8名男生参加了“立定跳远”的测试,他们的成绩(单位:分)如下:95,100,82,90,89,90,90,85①“95,100,82,90,89,90,90,85”这组数据的众数是,中位数是.②小聪同学的成绩是92分,他的成绩如何?③如果将不低于90分的成绩评为优秀,请你估计八年级80名男生中“立定跳远”成绩为优秀的学生约为多少人?15、(8分)如图,抛物线y=x2+bx+c与x轴交于A(﹣1,0),B(3,0)两点,与轴交于点.(1)求该抛物线的解析式;(2)P是y轴正半轴上一点,且△PAB是以AB为腰的等腰三角形,试求点P的坐标;(3)作直线BC,若点Q是直线BC下方抛物线上的一动点,三角形QBC面积是否有最大值,若有,请求出此时Q点的坐标;若没有,请说明理由.16、(8分)某农机租赁公司共有50台收割机,其中甲型20台、乙型30台,现将这50台联合收割机派往A,B两地区收割小麦,其中30台派往A地区,20台派往B地区,两地区与该农机公司商定的每天租赁价格如下表:(1)设派往A地区x台乙型联合收割机,租赁公司这50台联合收割机天获得的租金为y元,求y关于x的函数关系式,并写出自变量的取值范围:(2)若使农机租赁公司这50台收割机一天所获租金不低于79600元,为农机租赁公司拟出一个分派方案,使该公司50台收割机每天获得租金最高,并说明理由.17、(10分)阅读下列材料:在分式中,对于只含有一个字母的分式,当分子的次数小于分母的次数时,我们称之为“真分式”,如:.当分子的次数大于或等于分母的次数时,我们称之为“假分式”,如:.假分式可以化为整式与真分式和的形式,我们也称之为带分式,如:.解决问题:(1)下列分式中属于真分式的是()A.B.C.D.(2)将假分式分别化为带分式;(3)若假分式的值为整数,请直接写出所有符合条件的整数x的值.18、(10分)甲、乙两人利用不同的交通工具,沿同一路线从A地出发前往B地,甲出发1h后,乙出发,设甲与A地相距y甲(km),乙与A地相距y乙(km),甲离开A地的时间为x(h),y甲、y乙与x之间的函数图象如图所示.(1)甲的速度是_____km/h;(2)当1≤x≤5时,求y乙关于x的函数解析式;(3)当乙与A地相距240km时,甲与A地相距_____km.B卷(50分)一、填空题(本大题共5个小题,每小题4分,共20分)19、(4分)如图,在边长为6的正方形ABCD中,点F为CD上一点,E是AD的中点,且DF=1.在BC上找点G,使EG=AF,则BG的长是___________20、(4分)一组数据-3,x,-2,3,1,6的中位数是1,则其方差为________21、(4分)如图,在平行四边形ABCD中,∠A=70°,DC=DB,则∠CDB=__.22、(4分)如图,在Rt△ABC中,∠C=90°,CD⊥AB,垂足为D,AD=8,DB=2,则CD的长为_____.23、(4分)甲、乙、丙、丁四人进行射击测试,每人10次射击成绩平均数均是9.2环,方差分别为,,,,则成绩最稳定的是______.二、解答题(本大题共3个小题,共30分)24、(8分)解方程:(1);(2).25、(10分)如图,已知是的中线,且求证:若,试求和的长26、(12分)已知,,,求的值.

参考答案与详细解析一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)1、A【解析】

科学记数法,是指把一个大于10(或者小于1)的整数记为a×10n的形式(其中1≤|a|<10)的记数法.【详解】解:261800=2.618×105.故选A本题考核知识点:科学记数法.解题关键点:理解科学记数法的定义.2、C【解析】

根据题意和函数图象中的数据可以判断各个小题中的结论是否正确,从而可以解答本题.【详解】解:由图可得,甲步行的速度为:240÷4=60米/分,故①正确,乙追上甲用的时间为:16-4=12(分钟),故②错误,乙走完全程用的时间为:2400÷(16×60÷12)=30(分钟),故③正确,乙到达终点时,甲离终点距离是:2400-(4+30)×60=360米,故④正确,故选:C.本题考查一次函数的应用,解答本题的关键是明确题意,找出所求问题需要的条件,利用数形结合的思想解答.3、C【解析】

将分式中的x,y的值同时扩大为原来的2019倍,则x、2x-4y的值都扩大为原来的2019倍,所以根据分式的基本性质可得,变化后分式的值保持不变.【详解】解:∵将分式中的x,y的值同时扩大为原来的2019倍,

则,

∴变化后分式的值保持不变.

故选:C.此题主要考查了分式的基本性质,解答此题的关键是要明确:分式的分子与分母同乘(或除以)一个不等于0的整式,分式的值不变.4、C【解析】

根据不等式的运算、相似三角形的判定定理、补角的性质、直角的性质对各命题进行判断即可.【详解】(1)如果a<0,b>0,那么a+b的值不确定,错误;(2)如果两个三角形的3个角对应相等,那么这两个三角形相似,错误;(3)同角的补角相等,正确;(4)直角都相等,正确;故真命题的个数是2个故答案为:C.本题考查了命题的问题,掌握不等式的运算、相似三角形的判定定理、补角的性质、直角的性质是解题的关键.5、A【解析】

根据一次函数图象的性质,一次函数与一元一次方程的关系对各小题分析判断即可得解.【详解】由图象得:①关于x的方程kx+b=0的解为x=2,故①正确;②当x>2时,y<0,故②正确;③当x<0时,y>3,故③错误;故选:A本题考查了一次函数图象的性质及一次函数与一元一次方程的关系,对于任意一个以x为未知数的一元一次方程,它都可以转化为kx+b=0(k≠0)的形式,解一元一次方程相当于在某个一次函数的函数y=kx+b值为0时,求自变量的值.6、C【解析】

如图,在△ABC中,∠C=90∘,AD平分∠BAC交BC于点D,且BD=1CD,BC=9cm,则点D到AB的距离.【详解】如图,过点D作DE⊥AB于E,

∵BD:DC=1:1,BC=6,

∴DC=11+2×6=1,

∵AD平分∠BAC,∠C=90∘,

∴DE=DC=1.

故选:C.本题考查角平分线的性质和点到直线的距离,解题的关键是掌握角平分线的性质.7、B【解析】试题分析:点P(2,-3)关于y轴的对称点的坐标是(-2,-3).故选B.考点:关于x轴、y轴对称的点的坐标.8、D【解析】

根据必然事件、不可能事件、随机事件的概念可区别各类事件,从而判定选项A、C的正误;根据普查和抽样调查的意义可判断出B的正误;根据样本容量的意义可判断出D的正误.【详解】解:A、明天的天气阴是随机事件,故错误;

B、了解本校八年级(2)班学生课外阅读情况适合普查,故错误;

C、任意打开八年级下册数学教科书,正好是第5页是随机事件,故错误;

D、为了解高港区262846人的体质情况,抽查了5000人的体质情况进行统计分析,样本容量是5000,故正确;故选:D.本题考查了必然事件、不可能事件、随机事件的概念,普查和抽样调查的意义以及样本容量的意义.二、填空题(本大题共5个小题,每小题4分,共20分)9、【解析】试题分析:首先设点P的坐标为(x,y),根据矩形的周长可得:2(x+y)=10,则y=-x+5,即该直线的函数解析式为y=-x+5.10、【解析】

一元二次方程经过整理都可化成一般形式ax²+bx+c=0(a≠0).其中ax²叫作二次项,a是二次项系数;bx叫作一次项,b是一次项系数;c叫作常数项.【详解】解:一元二次方程的一次项系数为-1.故答案为:.本题考查的知识点是一元二次方程的一般形式,是基础题目,易于理解掌握.11、【解析】

求概率时,已知和未知与几何有关的就是几何概率.计算方法是长度比,面积比,体积比等.【详解】设最小正方形的边长为1,则小正方形边长为2,阴影部分面积=2×2×4+1×1×2=18,白色部分面积=2×2×4+1×1×2=18,故石子落在阴影区域的概率为.故答案为:.本题考查了概率,正确运用概率公式是解题的关键.12、2【解析】

解:这组数据的平均数为2,

有(2+2+0-2+x+2)=2,

可求得x=2.

将这组数据从小到大重新排列后,观察数据可知最中间的两个数是2与2,

其平均数即中位数是(2+2)÷2=2.

故答案是:2.13、十二【解析】

根据多边形的内角和公式列方程求解即可;【详解】设这个多边形是n边形,

由题意得,(n-2)•180°=1800°,

解得n=12;故答案为十二本题考查了多边形的内角和,关键是掌握多边形的内角和公式.三、解答题(本大题共5个小题,共48分)14、(1)7;(2)①90;90;②小聪同学的成绩处于中等偏上;③有50人.【解析】

(1)由统计结果图即可得出结果;(2)①根据已知数据通过由小到大排列确定出众数与中位数即可;②求出8名男生成绩的平均数,然后用92与平均数进行比较即可;③求出成绩不低于90分占的百分比,乘以80即可得到结果.【详解】(1)由统计结果图得:参加“实心球”测试的男生人数是7人,故答案为:7;(2)①将95,100,82,90,89,90,90,85这组数据由小到大排列:82,85,89,90,90,90,95,100;根据数据得:众数为90,中位数为90,故答案为:90;90;②8名男生平均成绩为:=90.125,∵92>90.125,∴小聪同学的成绩处于中等偏上;③8名男生中达到优秀的共有5人,根据题意得:×80=50(人),则估计八年级80名男生中“立定跳远”成绩为优秀的学生约为50人.本题考查了众数、中位数、平均数、用样本估计总体等知识,熟练掌握众数、中位数、平均数的概念是解题的关键.15、(1)y=x2-2x-2;(2)P点的坐标为(0,)或(0,);(2)点Q(,-).【解析】

(1)把A(﹣1,0),B(2,0)两点代入y=-x2+bx+c即可求出抛物线的解析式;(2)由A(﹣1,0),B(2,0)可得AB=1,由△PAB是以AB为腰的等腰三角形,可分两种情况PA=AB=1时,PB=AB=1时,根据勾股定理分别求出OP的长即可求解;(2)由抛物线得C(0,-2),求出直线BC的解析式,过点Q作QM∥y轴,交BC于点M,设Q(x,x2-2x-2),则M(x,x-2),根据三角形QBC面积S=QM∙OB得出二次函数解析式,根据二次函数的性质即可求出Q点坐标及△QBC面积的最大值【详解】解:(1)因为抛物线y=x2+bx+c与x轴交于A(﹣1,0),B(2,0)两点,所以可得解得.所以该抛物线的解析式为:y=x2-2x-2;(2)由A(﹣1,0),B(2,0)可得AB=1.因为P是y轴正半轴上一点,且△PAB是以AB为腰的等腰三角形,可得PA=1或PB=1.当PA=1时,因为A(﹣1,0),所以OP==,所以P(0,);当PB=1时,因为B(2,0),所以OP==,所以P(0,);所以P点的坐标为(0,)或(0,);(2)对于y=x2-2x-2,当x=0时,y=-2,所以点C(0,-2)设直线BC的解析式为:y=kx+b(k≠0),B(2,0),C(0,-2)可得解得所以直线BC的解析式为:y=x-2.过点Q作QM∥y轴,交BC于点M,设Q(x,x2-2x-2),则M(x,x-2).所以三角形QBC的面积为S=QM∙OB=[(x-2)-(x2-2x-2)]×2=-x2+x.因为a=-<0,函数图象开口方向向下,所以函数有最大值,即三角形QBC面积有最大值.此时,x=-=,此时Q点的纵坐标为-,所以点Q(,-).本题考查二次函数综合,用到的知识点是二次函数的图象与性质、三角形的面积、等腰三角形的判定、直线与抛物线的交点,关键是理解坐标与图形性质,会利用分类讨论的思想解决数学问题.16、(1)y=200x+74000(10≤x≤30);(2)将30台乙型收割机全部派往A地区,20台甲型收割机全部派往B地区,这样公司每天获得租金最高,理由见解析.【解析】

(1)根据未知量,找出相关量,列出函数关系式;

(2)利用不等式的性质进行求解,对x进行分类即可;根据一次函数的单调性可直接判断每天获得租金最高的方案,得出结论.【详解】解:(1)由于派往A地的乙型收割机x台,则派往B地的乙型收割机为(30-x)台,派往A,B地区的甲型收割机分别为(30-x)台和(x-10)台.

∴y=1600x+1200(30-x)+1800(30-x)+1600(x-10)=200x+74000(10≤x≤30).

(2)由题意,得200x+74000≥79600,解得x≥28,

∵10≤x≤30,x是正整数,∴x=28、29、30

∴有3种不同分派方案:

①当x=28时,派往A地区的甲型收割机2台,乙型收割机28台,余者全部派往B地区;

②当x=29时,派往A地区的甲型收割机1台,乙型收割机29台,余者全部派往B地区;

③当x=30时,派往A地区的甲型收割机0台,乙型收割机30台,余者全部派往B地区;∵y=200x+74000中,

∴y随x的增大而增大,∴当x=30时,y取得最大值,

此时,y=200×30+74000=80000,∴农机租赁公司将30台乙型收割机全部派往A地区,20台甲型收割机全部派往B地区,这样公司每天获得租金最高,最高租金为80000元.故答案为:(1)y=200x+74000(10≤x≤30);(2)将30台乙型收割机全部派往A地区,20台甲型收割机全部派往B地区,这样公司每天获得租金最高,理由见解析.本题考查利用一次函数解决实际问题,解题的关键是明确题意,找出所求问题需要的条件,利用一次函数的性质解答.17、(1)C;(2),;(3)x可能的整数值为0,-2,-4,-6.【解析】

(1)根据真分式的定义,即可选出正确答案;(2)利用题中的方法把分子分别变形为和,然后写成带分式即可;(3)先把分式化为带分式,然后利用有理数的整除性求解.【详解】(1)A.分子的次数为2,分母的次数为1,所以错误;B.分子的次数为1,分母的次数为1,故错误;C.分子的次数为0,分母的次数为1,故正确;D.分子的次数为2,分母的次数为2,故错误;所以选C;(2),,(3)∵该分式的值为整数,∴的值为整数,所以x+3可取得整数值为±3,±1,x可能的整数值为0,-2,-4,-6.本题主要考查分式的性质,要结合分式的基本性质依照题目中的案例,会对分式进行适当的变形.(1)根据真分式的定义判断即可;(2)可借助平方差公式,先给x2减1再加1,将它凑成平方差公式x2-1=(x+1)(x-1);(3)需将假分式等量变形成带分式,然后对取整.18、(1)V甲=60km/h(2)y乙=90x-90(3)220【解析】

(1)根据图象确定出甲的路程与时间,即可求出速度;(2)利用待定系数法确定出y乙关于x的函数解析式即可;(3)求出乙距A地240km时的时间,加上1,再乘以甲的速度即可得到结果.【详解】(1)根据图象得:360÷6=60km/h;(2)当1≤x≤5时,设y乙=kx+b,把(1,0)与(5,360)代入得:,解得:k=90,b=-90,则y乙=90x-90;(3)∵乙与A地相距240km,且乙的速度为360÷(5-1)=90km/h,∴乙用的时间是240÷90=h,则甲与A地相距60×(+1)=220km.此题考查了一次函数的应用,弄清图象中的数据是解本题的关键.一、填空题(本大题共5个小题,每小题4分,共20分)19、1或2【解析】

过E作EH⊥BC于H,取,根据平行线分线段成比例定理得:BH=CH=3,证明Rt△ADF≌Rt△EHG,得GH=DF=1,可得BG的长,再运用等腰三角形的性质可得BG及的长.【详解】解:如图:过E作EH⊥BC于H,取,则AB∥EH∥CD,∵E是AD的中点,∴BH=CH=3,∵四边形ABCD是正方形,∴AD=CD=EH,∠D=∠EHG=90°,∵EG=AF,∴Rt△ADF≌Rt△EHG(HL),∴GH=DF=1,∴BG=BH−GH=3−1=1;∵∴∴故答案为:1或2.本题主要考查了全等三角形的判定与性质,正方形的性质,

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论