2025届山东省潍坊市第一中学数学高一上期末学业水平测试试题含解析_第1页
2025届山东省潍坊市第一中学数学高一上期末学业水平测试试题含解析_第2页
2025届山东省潍坊市第一中学数学高一上期末学业水平测试试题含解析_第3页
2025届山东省潍坊市第一中学数学高一上期末学业水平测试试题含解析_第4页
2025届山东省潍坊市第一中学数学高一上期末学业水平测试试题含解析_第5页
已阅读5页,还剩8页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

2025届山东省潍坊市第一中学数学高一上期末学业水平测试试题注意事项1.考生要认真填写考场号和座位序号。2.试题所有答案必须填涂或书写在答题卡上,在试卷上作答无效。第一部分必须用2B铅笔作答;第二部分必须用黑色字迹的签字笔作答。3.考试结束后,考生须将试卷和答题卡放在桌面上,待监考员收回。一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1.北京2022年冬奥会新增了女子单人雪车、短道速滑混合团体接力、跳台滑雪混合团体、男子自由式滑雪大跳台、女子自由式滑雪大跳台、自由式滑雪空中技巧混合团体和单板滑雪障碍追逐混合团体等7个比赛小项,现有甲、乙两名志愿者分别从7个比赛小项中各任选一项参加志愿服务工作,且甲、乙两人的选择互不影响,那么甲、乙两名志愿者选择同一个比赛小项进行志愿服务工作的概率是()A.249 B.C.17 D.2.已知函数(ω>0),对任意x∈R,都有≤,并且在区间上不单调,则ω的最小值是()A.6 B.7C.8 D.93.终边在y轴上的角的集合不能表示成A. B.C. D.4.下列函数中为奇函数,且在定义域上为增函数的有()A. B.C. D.5.已知全集U=R,集合,,则集合()A. B.C. D.6.一个几何体的三视图如图所示(单位:),则该几何体的体积为()A B.C. D.7.函数的零点所在的区间为()A.(-1,0) B.(0,)C.(,1) D.(1,2)8.已知函数,则A.0 B.1C. D.29.已知函数是定义在上的奇函数,对任意的都有,当时,,则()A. B.C. D.10.已知函数,则A. B.0C.1 D.二、填空题:本大题共6小题,每小题5分,共30分。11.函数的值域为___________.12.若,则的取值范围为___________.13.已知,且,则______.14.已知扇形弧长为20cm,圆心角为,则该扇形的面积为___________.15.定义域为R,值域为-∞,116.已知为直角三角形的三边长,为斜边长,若点在直线上,则的最小值为__________三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17.如图,已知在正四棱锥中,为侧棱的中点,连接相交于点(1)证明:;(2)证明:;(3)设,若质点从点沿平面与平面的表面运动到点的最短路径恰好经过点,求正四棱锥的体积18.已知函数,(1)证明在上是增函数;(2)求在上的最大值及最小值.19.如图所示,在中,,,与相交于点.(1)用,表示,;(2)若,证明:,,三点共线.20.某家庭进行理财投资,根据长期收益率市场预测,投资债券等稳健型产品的收益与投资额成正比,投资股票等风险型产品的收益与投资额的算术平方根成正比,已知投资1万元时两类产品的收益分别为万元和万元(如图).(1)分别写出两种产品的收益和投资的函数关系;(2)该家庭现有20万元资金,全部用于理财投资,问:怎样分配资金能使投资获得最大的收益,其最大收益为多少万元?21.已知函数,(1)若,求的单调区间;(2)若有最大值3,求实数的值.

参考答案一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1、C【解析】根据古典概型概率的计算公式直接计算.【详解】由题意可知甲、乙两名志愿者分别从7个比赛小项中各任选一项参加志愿服务工作共有7×7=49种情况,其中甲、乙两名志愿者选择同一个比赛小项进行志愿服务工作共7种,所以甲、乙两名志愿者选择同一个比赛小项进行志愿服务工作的概率是749故选:C.2、B【解析】根据,得为函数的最大值,建立方程求出的值,利用函数的单调性进行判断即可【详解】解:对任意,都有,为函数的最大值,则,,得,,在区间,上不单调,,即,即,得,则当时,最小.故选:B.3、B【解析】分别写出终边落在y轴正半轴和负半轴上的角的集合,然后进行分析运算即可得解.【详解】终边落在y轴正半轴上的角的集合为:,终边落在y轴负半轴上的角的集合为:,故终边在y轴上的角的集合可表示成为,故A选项可以表示;将与取并集为:,故C选项可以表示;将与取并集为:,故终边在y轴上的角的集合可表示成为,故D选项可以表示;对于B选项,当时,或,显然不是终边落在y轴上的角;综上,B选项不能表示,满足题意.故选:B.【点睛】本题考查轴线角的定义,侧重对基础知识的理解的应用,考查逻辑思维能力和分析运算能力,属于常考题.4、C【解析】根据函数的奇偶性,可排除A,B;说明的奇偶性以及单调性,可判断C;根据的单调性,判断D.【详解】函数为非奇非偶函数,故A错;函数为偶函数,故B错;函数,满足,故是奇函数,在定义域R上,是单调递增函数,故C正确;函数在上是增函数,在上是增函数,在定义域上不单调,故D错,故选:C5、D【解析】依次计算集合,最后得出结果即可.【详解】,,或,故.故选:D.6、B【解析】由三视图知,该几何体由两个相同的圆锥和一个圆柱组合而成,圆锥的底面圆半径为1,高为1,圆柱的母线长为2,底面圆半径为1,所以几何体的体积为,选B.7、C【解析】应用零点存在性定理判断零点所在的区间即可.【详解】由解析式可知:,∴零点所在的区间为.故选:C.8、B【解析】,选B.9、C【解析】由可推出,可得周期,再利用函数的周期性与奇偶性化简,代入解析式计算.【详解】因为,所以,故周期为,又函数是定义在上的奇函数,当时,,所以故选:C.10、C【解析】根据自变量所在的范围先求出,然后再求出【详解】由题意得,∴故选C【点睛】根据分段函数的解析式求函数值时,首先要分清自变量所属的范围,然后再代入解析式后可得结果,属于基础题二、填空题:本大题共6小题,每小题5分,共30分。11、【解析】由函数定义域求出的取值范围,再由的单调性即可得解.【详解】函数的定义域为R,而,当且仅当x=0时取“=”,又在R上单调递减,于是有,所以函数的值域为.故答案为:12、【解析】一元二次不等式,对任意的实数都成立,与x轴最多有一个交点;由对勾函数的单调性可以求出m的范围.【详解】由,得.由题意可得,,即.因为,所以,故.故答案为:13、##【解析】化简已知条件,求得,通过两边平方的方法求得,进而求得.【详解】依题意,①,,,化简得①,则,由,得,,.故答案为:14、【解析】求出扇形的半径后,利用扇形的面积公式可求得结果.【详解】由已知得弧长,,所以该扇形半径,所以该扇形的面积.故答案为:15、fx【解析】利用基本初等函数的性质可知满足要求的函数可以是fx=1-a【详解】因为fx=2x的定义域为所以fx=-2x的定义域为则fx=1-2x的定义域为所以定义域为R,值域为-∞,1的一个减函数是故答案为:fx16、4【解析】∵a,b,c为直角三角形中的三边长,c为斜边长,∴c=,又∵点M(m,n)在直线l:ax+by+2c=0上,∴m2+n2表示直线l上的点到原点距离的平方,∴m2+n2的最小值为原点到直线l距离的平方,由点到直线的距离公式可得d==2,∴m2+n2的最小值为d2=4,故答案为4.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17、(1)详见解析;(2)详见解析;(3).【解析】(1)由中位线定理可得线线平面,从而有线面平行;(2)正四棱锥中,底面是正方形,因此有,又PO是正四棱锥的高,从而有PO⊥AC,这样就有AC与平面PBD垂直,从而得面面垂直;(3)把与沿PD摊平,由A、M、C共线,因此新的平面图形是平行四边形,从而为菱形,M到底面ABCD的距离为原正四棱锥高PO的一半,计算可得体积试题解析:(1)证明:连接OM,∵O,M分别为BD,PD的中点,∴在△PBD中,OM//PB,又PB面ACM,OM面ACM,∴PB//面ACM(2)证明:连接PO.∵在正四棱锥中,PA=PC,O为AC的中点,∴PO⊥AC,BD⊥AC,又PO∩BD=O,AC⊥平面PBD,又AC平面ACM,∴平面ACM⊥平面PBD(3)如图,把△PAD与△PCD沿PD展开成平面四边形PADC1由题意可知A,M,C1三点共线,∵△PAD≌△PCD,M为PD的中点,∴AM=MC1,即M为AC1中点,∴平面四边形PADC1为平行四边形,又PA=PC,∴平面四边形PADC1为菱形,∴正四棱锥的侧棱长为2∵PO⊥AC,PO⊥BD,PO⊥面ABCD,∴PO为正四棱锥的高18、(1)证明见解析;(2)当时,有最小值2;当时,有最大值.【解析】(1)根据单调性的定义,直接证明,即可得出结论;(2)根据(1)的结果,确定函数在给定区间的单调性,即可得出结果.【详解】(1)证明:在上任取,,且,,,,,,,即,故在上是增函数;(2)解:由(1)知:在上是增函数,当时,有最小值2;当时,有最大值.【点睛】本题主要考查证明函数单调性,以及由函数单调性求最值,属于常考题型.19、(1),;(2)见解析【解析】(1)首先根据题中所给的条件,可以求得,从而有,将代入,整理求得结果,同理求得;(2)根据条件整理得到,从而得到与共线,即,,三点共线,证得结果.【详解】(1)解:因为,所以,所以.因为,所以,所以.(2)证明:因为,所以.因为,所以,即与共线.因为与的有公共点,所以,,三点共线.【点睛】该题考查的是有关向量的问题,涉及到的知识点有平面向量基本定理,利用向量共线证得三点共线,属于简单题目.20、(1)投资债券,投资股票;(2)投资债券类产品万元,股票类投资为4万元,收益最大值为万元.【解析】(1)设函数解析式,,代入即可求出的值,即可得函数解析式;(2)设投资债券类产品万元,则股票类投资为万元,年收益为万元,则,代入解析式,换元求最值即可.【详解】(1)设.由题意可得:,,所以,,(2)设投资债券类产品万元,则股票类投资为万元,年收益为万元依题意得即.令则,则所以当即时,收益最大为万元,所以投资债券类产品万元,股票类投资为4万元,收益最大值为万元.21、(1)递减区间为,递增区间;(2).【解析】(1)当时,设,根据指数函数和二次函数的单调性,结合复合函数的单调性,即可求解;(2)由题意,函数,分,和三种情况讨论,结合复合函数的单调性,即可求解.【详解】(1)当时,,设,则函数开口向下,对称轴方程为,所以函数在单调递增,在单调递减,又由指数函数在上为单调递减函数,根据复合函数的单调性,可得函数在单调递减,在单调递增,即函数的递减区间为,递增区间.(2)由题意,函数,①当时,函数,根据复合函数的单调性,可得函数在上为单调递增

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论