北京通州区2025届高二上数学期末经典试题含解析_第1页
北京通州区2025届高二上数学期末经典试题含解析_第2页
北京通州区2025届高二上数学期末经典试题含解析_第3页
北京通州区2025届高二上数学期末经典试题含解析_第4页
北京通州区2025届高二上数学期末经典试题含解析_第5页
已阅读5页,还剩12页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

北京通州区2025届高二上数学期末经典试题注意事项:1.答题前,考生先将自己的姓名、准考证号填写清楚,将条形码准确粘贴在考生信息条形码粘贴区。2.选择题必须使用2B铅笔填涂;非选择题必须使用0.5毫米黑色字迹的签字笔书写,字体工整、笔迹清楚。3.请按照题号顺序在各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试题卷上答题无效。4.保持卡面清洁,不要折叠,不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.已知F为椭圆的右焦点,A为C的右顶点,B为C上的点,且垂直于x轴.若直线AB的斜率为,则椭圆C的离心率为()A. B.C. D.2.甲、乙、丙、丁四位同学一起去找老师询问成语竞赛的成绩.老师说:你们四人中有位优秀,位良好,我现在给甲看乙、丙的成绩,给乙看丙的成绩,给丁看甲的成绩.看后甲对大家说:我还是不知道我的成绩.根据以上信息,则()A.乙、丁可以知道自己的成绩 B.乙、丁可以知道对方的成绩C.乙可以知道四人的成绩 D.丁可以知道四人的成绩3.“”是直线与直线平行的()A.充分不必要条件 B.必要不充分条件C.充要条件 D.既不充分也不必要条件4.椭圆中以点为中点的弦所在直线斜率为()A. B.C. D.5.已知分别是椭圆的左,右焦点,点M是椭圆C上的一点,且的面积为1,则椭圆C的短轴长为()A.1 B.2C. D.46.函数的图象大致为()A. B.C. D.7.已知函数,则()A. B.0C. D.18.已知双曲线的焦点为,,其渐近线上横坐标为的点满足,则()A. B.C.2 D.49.已知直线与圆相切,则的值是()A. B.C. D.10.已知定义域为R的函数f(x)不是偶函数,则下列命题一定为真命题的是()A.∀x∈R,f(-x)≠f(x)B.∀x∈R,f(-x)≠-f(x)C∃x0∈R,f(-x0)≠f(x0)D.∃x0∈R,f(-x0)≠-f(x0)11.已知为等腰直角三角形的直角顶点,以为旋转轴旋转一周得到几何体,是底面圆上的弦,为等边三角形,则异面直线与所成角的余弦值为()A. B.C. D.12.已知点与不重合的点A,B共线,若以A,B为圆心,2为半径的两圆均过点,则的取值范围为()A. B.C. D.二、填空题:本题共4小题,每小题5分,共20分。13.与双曲线有共同的渐近线,并且经过点的双曲线方程是______14.曲线在点(1,1)处的切线方程为_____15.在空间四边形ABCD中,AD=2,BC=2,E,F分别是AB,CD的中点,EF=,则异面直线AD与BC所成角的大小为____.16.已知离心率为的椭圆:和离心率为的双曲线:有公共的焦点,其中为左焦点,P是与在第一象限的公共点.线段的垂直平分线经过坐标原点,则的最小值为_____________.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(12分)已知函数(1)若在上单调递减,求实数a的取值范围(2)若是方程的两个不相等的实数根,证明:18.(12分)已知,以点为圆心圆被轴截得的弦长为.(1)求圆的方程;(2)若过点的直线与圆相切,求直线的方程.19.(12分)已知;对任意的恒成立.(1)若是真命题,求m的取值范围;(2)若是假命题,是真命题,求m的取值范围.20.(12分)如图,一个湖的边界是圆心为的圆,湖的一侧有一条直线型公路,湖上有桥(是圆的直径).规划在公路上选两个点、,并修建两段直线型道路、.规划要求,线段、上的所有点到点的距离均不小于圆的半径.已知点到直线的距离分别为和(为垂足),测得,,(单位:百米).(1)若道路与桥垂直,求道路的长;(2)在规划要求下,点能否选在处?并说明理由.21.(12分)已知的三个顶点的坐标分别为,,(1)求边AC上的中线所在直线方程;(2)求的面积22.(10分)已知函数(e为自然对数的底数),(),.(1)若直线与函数,的图象都相切,求a的值;(2)若方程有两个不同的实数解,求a的取值范围.

参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、D【解析】根据题意表示出点的坐标,再由直线AB的斜率为,列方程可求出椭圆的离心率【详解】由题意得,,当时,,得,由题意可得点在第一象限,所以,因为直线AB的斜率为,所以,化简得,所以,,得(舍去),或,所以离心率,故选:D2、A【解析】分析可知乙、丙的成绩中必有位优秀、位良好,结合题意进行推导,可得出结论.【详解】由于个人中的成绩中有位优秀,位良好,甲知道乙、丙的成绩,还是不知道自己的成绩,则乙、丙的成绩必有位优秀、位良好,甲、丁的成绩中必有位优秀、位良好,因为给乙看丙的成绩,则乙必然知道自己的成绩,丁知道甲的成绩后,必然知道自己的成绩.故选:A.3、C【解析】先根据直线平行的充要条件求出a,然后可得.【详解】若,则,,显然平行;若直线,则且,即.故“”是直线与直线平行的充要条件.故选:C4、A【解析】先设出弦的两端点的坐标,分别代入椭圆方程,两式相减后整理即可求得弦所在的直线的斜率【详解】设弦的两端点为,,代入椭圆得两式相减得,即,即,即,即,弦所在的直线的斜率为,故选:A5、B【解析】首先分别设,,再根据椭圆的定义和性质列出等式,即可求解椭圆的短轴长.【详解】设,,所以,即,即,得,短轴长为.故选:B6、A【解析】由题意首先确定函数的奇偶性,然后考查函数在特殊点的函数值排除错误选项即可确定函数的图象.【详解】由函数的解析式可得:,则函数为奇函数,其图象关于坐标原点对称,选项CD错误;当时,,选项B错误.故选:A.【点睛】函数图象的识辨可从以下方面入手:(1)从函数的定义域,判断图象的左右位置;从函数的值域,判断图象的上下位置.(2)从函数的单调性,判断图象的变化趋势.(3)从函数的奇偶性,判断图象的对称性.(4)从函数的特征点,排除不合要求的图象.利用上述方法排除、筛选选项7、B【解析】先求导,再代入求值.详解】,所以.故选:B8、B【解析】由题意可设,则,再由,可得,从而可求出的值【详解】解:双曲线的渐近线方程为,故设,设,则,因为,所以,即,所以,因为,所以,因为,所以,故选:B9、D【解析】直线与圆相切,直接通过求解即可.【详解】因为直线与圆相切,所以圆心到直线的距离,所以,.故选:D10、C【解析】利用偶函数的定义和全称命题的否定分析判断解答.【详解】∵定义域为R的函数f(x)不是偶函数,∴∀x∈R,f(-x)=f(x)为假命题,∴∃x0∈R,f(-x0)≠f(x0)为真命题.故选C【点睛】本题主要考查偶函数的定义和全称命题的否定,意在考查学生对该知识的理解掌握水平,属于基础题.11、B【解析】设,过点作的平行线,与平行的半径交于点,找出异面直线与所成角,然后通过解三角形可得出所求角的余弦值.【详解】设,过点作的平行线,与平行的半径交于点,则,,所以为异面直线与所成的角,在三角形中,,,所以.故选:B.【点睛】本题考查异面直线所成角余弦值的计算,一般通过平移直线的方法找到异面直线所成的角,考查计算能力,属于中等题.12、D【解析】由题意可得两点的坐标满足圆,然后由圆的性质可得当时,弦长最小,当过点时,弦长最长,再根据向量数量积的运算律求解即可【详解】设点,则以A,B为圆心,2为半径的两圆方程分别为和,因为两圆过,所以和,所以两点的坐标满足圆,因为点与不重合的点A,B共线,所以为圆的一条弦,所以当弦长最小时,,因为,半径为2,所以弦长的最小值为,当过点时,弦长最长为4,因为,所以当弦长最小时,的最大值为,当弦长最大时,的最小值为,所以的取值范围为,故选:D二、填空题:本题共4小题,每小题5分,共20分。13、【解析】设双曲线的方程为,将点代入方程可求的值,从而可得结果【详解】设与双曲线有共同的渐近线的双曲线的方程为,该双曲线经过点,所求的双曲线方程为:,整理得故答案为【点睛】本题考查双曲线的方程与简单性质,意在考查灵活应用所学知识解答问题的能力,属于中档题.与共渐近线的双曲线方程可设为,只需根据已知条件求出即可.14、【解析】根据导数的几何意义求出切线的斜率,再根据点斜式可求出结果.【详解】因为,所以曲线在点(1,1)处的切线的斜率为,所以所求切线方程为:,即.故答案为:.15、【解析】由已知找到异面直线所成角的平面角,再运用余弦定理可得答案.【详解】解:设BD的中点为O,连接EO,FO,所以,则∠EOF(或其补角)就是异面直线AD,BC所成的角的平面角,又因为EO=AD=1,FO=BC=,EF=.根据余弦定理得=-,所以∠EOF=150°,异面直线AD与BC所成角的大小为30°.故答案为:30°.16、##4.5【解析】设为右焦点,半焦距为,,由题意,,则,所以,从而有,最后利用均值不等式即可求解.【详解】解:设为右焦点,半焦距为,,由题意,,则,所以,即,故,当且仅当时取等,所以,故答案为:.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17、(1);(2)详见解析【解析】(1)首先求函数的导数,结合函数的导数与函数单调性的关系,参变分离后,转化为求函数的最值,即可求得实数的取值范围;(2)将方程的实数根代入方程,再变形得到,利用分析法,转化为证明,通过换元,构造函数,转化为利用导数证明,恒成立.【小问1详解】,,在上单调递减,在上恒成立,即,即在,设,,,当时,,函数单调递增,当时,,函数单调递减,所以函数的最大值是,所以;【小问2详解】若是方程两个不相等的实数根,即又2个不同实数根,且,,得,即,所以,不妨设,则,要证明,只需证明,即证明,即证明,令,,令函数,所以,所以函数在上单调递减,当时,,所以,,所以,即,即得【点睛】本题考查利用导数的单调性求参数的取值范围,以及证明不等式,属于难题,导数中的双变量问题,往往采用分析法,转化为函数与不等式的关系,通过构造函数,结合函数的导数,即可证明.18、(1)(2)或【解析】(1)根据垂径定理,可直接计算出圆的半径;(2)根据直线的斜率是否存在分类讨论,斜率不存在时,可得到直线方程为的直线满足题意,斜率存在时,利用直线与圆相切,即到直线的距离等于半径,然后解出关于斜率的方程即可.【小问1详解】不妨设圆的半径为,根据垂径定理,可得:解得:则圆的方程为:【小问2详解】当直线的斜率不存在时,则有:故此时直线与圆相切,满足题意当直线的斜率存在时,不妨设直线的斜率为,点的直线的距离为直线的方程为:则有:解得:,此时直线的方程为:综上可得,直线的方程为:或19、(1)(2)【解析】(1)为真命题,则都为真命题,求出为真命题时的m的取值范围,并求交集,即为结果;(2)若是假命题,是真命题,则一真一假,分两种情况进行求解,最后求并集即为结果.【小问1详解】由题意得:为真命题,则要满足,解得:,对任意的恒成立,结合开口向上,所以要满足:,解得:,要保证是真命题,则与取交集,结果为【小问2详解】是假命题,是真命题,则一真一假,结合(1)中所求,当真假时,与取交集,结果为;当假真时,与取交集,结果为,综上:m的取值范围是.20、(1)15(百米)(2)点选在处不满足规划要求,理由见解析【解析】(1)建立适当的坐标系,得圆及直线的方程,进而得解.(2)不妨点选在处,求方程并求其与圆的交点,在线段上取点不符合条件,得结论.【小问1详解】如图,过作,垂足为.以为坐标原点,直线为轴,建立平面直角坐标系.因为为圆的直径,,所以圆的方程为.因为,,所以,故直线的方程为,则点,的纵坐标分别为3,从而,,直线的斜率为.因为,所以直线的斜率为,直线的方程为.令,得,,所以.因此道路的长为15(百米).【小问2详解】若点选在处,连结,可求出点,又,所以线段.由解得或,故不妨取,得到在线段上的点,因为,所以线段上存在点到点的距离小于圆的半径5.因此点选在处不满足规划要求.21、(1)(2)【解析】(1)先求得的中点,由此求得边AC上的中线所在直线方程.(2)结合点到直线距离公式求得的面积.【小问1详解】的中点为,所以边AC上的中线所在直线方程为.【小问2详解】直线的方程为,到直线的距离为,,所以.22、(1);(2).【解析】(1)根据导数的几何意义进行求解即可;(2)利用常变量分离法,通过构造新函数,由方程有两个不同的实数解问题,转化为两个函数的图象有两个交点问题,利用导数进行求解即

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论