2025届安徽省滁州市二中高二数学第一学期期末达标检测试题含解析_第1页
2025届安徽省滁州市二中高二数学第一学期期末达标检测试题含解析_第2页
2025届安徽省滁州市二中高二数学第一学期期末达标检测试题含解析_第3页
2025届安徽省滁州市二中高二数学第一学期期末达标检测试题含解析_第4页
2025届安徽省滁州市二中高二数学第一学期期末达标检测试题含解析_第5页
已阅读5页,还剩12页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

2025届安徽省滁州市二中高二数学第一学期期末达标检测试题考生请注意:1.答题前请将考场、试室号、座位号、考生号、姓名写在试卷密封线内,不得在试卷上作任何标记。2.第一部分选择题每小题选出答案后,需将答案写在试卷指定的括号内,第二部分非选择题答案写在试卷题目指定的位置上。3.考生必须保证答题卡的整洁。考试结束后,请将本试卷和答题卡一并交回。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.为了解一片大约一万株树木的生长情况,随机测量了其中100株树木的底部周长(单位:㎝).根据所得数据画出的样本频率分布直方图如图,那么在这片树木中,底部周长小于110㎝的株树大约是()A.3000 B.6000C.7000 D.80002.若直线l的倾斜角是钝角,则l的方程可能是()A. B.C. D.3.概率论起源于赌博问题.法国著名数学家布莱尔帕斯卡遇到两个赌徒向他提出的赌金分配问题:甲、乙两赌徒约定先赢满局者,可获得全部赌金法郎,当甲赢了局,乙赢了局,不再赌下去时,赌金如何分配?假设每局两人输赢的概率各占一半,每局输赢相互独立,那么赌金分配比较合理的是()A.甲法郎,乙法郎 B.甲法郎,乙法郎C.甲法郎,乙法郎 D.甲法郎,乙法郎4.已知函数在上单调递减,则实数的取值范围是()A. B.C. D.5.如图,在直三棱柱中,且,点E为中点.若平面过点E,且平面与直线AB所成角和平面与平面所成锐二面角的大小均为30°,则这样的平面有()A.1个 B.2个C.3个 D.4个6.设为等差数列的前项和,,,则A.-6 B.-4C.-2 D.27.若函数在上有两个极值点,则下列选项中不正确的为()A. B.C. D.8.某班进行了一次数学测试,全班学生的成绩都落在区间内,其成绩的频率分布直方图如图所示,若该班学生这次数学测试成绩的中位数的估计值为,则的值为()A. B.C. D.9.设P为椭圆C:上一点,,分别为左、右焦点,且,则()A. B.C. D.10.设是椭圆的上顶点,若上的任意一点都满足,则的离心率的取值范围是()A. B.C. D.11.已知圆:的面积被直线平分,圆:,则圆与圆的位置关系是()A.相离 B.相交C.内切 D.外切12.已知曲线,则曲线W上的点到原点距离的最小值是()A. B.C. D.二、填空题:本题共4小题,每小题5分,共20分。13.已知函数,___________.14.已知空间向量,则使成立的x的值为___________15.已知,为椭圆C的焦点,点P在椭圆C上,,则的面积为___________.16.已知一组数据的平均数为4,方差为3,若另一组数据的平均数为10,则该组数据的方差为_______.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(12分)在中,内角的对边分别是,且(1)求角的大小(2)若,且,求的面积18.(12分)已知椭圆的右焦点为F(,0),且点M(-,)在椭圆上.(1)求椭圆的方程;(2)直线l过点F,且与椭圆交于A,B两点,过原点O作l的垂线,垂足为P,若,求λ的值.19.(12分)已知椭圆的左右焦点分别为,,经过左焦点的直线与椭圆交于A,B两点(异于左右顶点)(1)求△的周长;(2)求椭圆E上的点到直线距离的最大值20.(12分)已知椭圆与直线相切,点G为椭圆上任意一点,,,且的最大值为3(1)求椭圆C的标准方程;(2)设直线与椭圆C交于不同两点E,F,点O为坐标原点,且,当的面积取最大值时,求的取值范围21.(12分)已知点,椭圆:离心率为,是椭圆的右焦点,直线的斜率为,为坐标原点.设过点的动直线与相交于,两点(1)求椭圆的方程(2)是否存在直线,使得的面积为?若存在,求出的方程;若不存在,请说明理由22.(10分)已知数列满足(1)求数列的通项公式;(2)设,求数列的前n项和

参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、C【解析】先由频率分布直方图得到抽取的样本中底部周长小于110㎝的概率,进而可求出结果.【详解】由频率分布直方图可得,样本中底部周长小于110㎝的概率为,因此在这片树木中,底部周长小于110㎝的株树大约是.故选:C.【点睛】本题主要考查频率分布直方图的应用,属于基础题型.2、A【解析】根据直线方程,求得直线斜率,再根据倾斜角和斜率的关系,即可判断和选择.【详解】若直线的倾斜角为,则,当时,为钝角,当,,当,为锐角;当不存在时,倾斜角为,对A:,显然倾斜角为钝角;对B:,倾斜角为锐角;对C:,倾斜角为锐角;对D:不存在,此时倾斜角为直角.故选:A.3、A【解析】利用独立事件计算出甲、乙各自赢得赌金的概率,由此可求得两人各分配的金额.【详解】甲赢得法郎的概率为,乙赢得法郎的概率为,因此,这法郎中分配给甲法郎,分配给乙法郎.故选:A.4、A【解析】由题意,在上恒成立,只需满足即可求解.【详解】解:因为,所以,因为函数在上单调递减,所以在上恒成立,只需满足,即,解得故选:A.5、B【解析】构造出长方体,取中点连接然后利用临界位置分情况讨论即可.【详解】如图,构造出长方体,取中点,连接则所有过点与成角的平面,均与以为轴的圆锥相切,过点绕且与成角,当与水平面垂直且在面的左侧(在长方体的外面)时,与面所成角为75°(与面成45°,与成30°),过点绕旋转,转一周,90°显然最大,到了另一个边界(在面与之间)为15度,即与面所成角从75°→90°→15°→90°→75°变化,此过程中,有两次角为30

,综上,这样的平面α有2个,故选:B.6、A【解析】由已知得解得故选A考点:等差数列的通项公式和前项和公式7、C【解析】求导,根据题意可得,从而可得出答案.【详解】解:,因为函数在上有两个极值点,所以,即.所以ABD正确,C错误.故选:C.8、A【解析】根据已知条件可得出关于、的方程组,解出这两个量的值,即可求得结果.【详解】由题意有,得,又由,得,解得,,有故选:A.9、B【解析】根据椭圆的定义写出,再根据条件即可解得答案.【详解】根据P为椭圆C:上一点,则有,又,所以,故选:B.10、C【解析】设,由,根据两点间的距离公式表示出,分类讨论求出的最大值,再构建齐次不等式,解出即可【详解】设,由,因为,,所以,因为,当,即时,,即,符合题意,由可得,即;当,即时,,即,化简得,,显然该不等式不成立故选:C【点睛】本题解题关键是如何求出的最大值,利用二次函数求指定区间上的最值,要根据定义域讨论函数的单调性从而确定最值11、D【解析】根据题意,圆:的面积被直线平分,即直线经过圆的圆心,由此求出两圆的圆心和半径,然后判断两个圆的位置关系即可【详解】根据题意,圆:,即,其圆心为,半径,圆:的面积被直线平分,即直线经过圆的圆心,则有1−m+1=0,解可得m=2,即所以圆的圆心(1,−1),半径为1,圆的标准方程是,圆心(−2,3),半径为4,其圆心距,所以两个圆外切,故选:D.12、A【解析】化简方程,得到,求出的范围,作出曲线的图形,通过图象观察,即可得到原点距离的最小值详解】解:即为,两边平方,可得,即有,则作出曲线的图形,如下:则点与点或的距离最小,且为故选:A二、填空题:本题共4小题,每小题5分,共20分。13、【解析】直接利用分段函数的解析式即可求解.【详解】因为,所以,所以.故答案为:-114、##【解析】利用空间向量垂直的坐标表示列方程求参数x的值.【详解】由题设,,可得.故答案为:.15、##【解析】设,然后根据椭圆的定义和余弦定理列方程组可求出,再由三角形的面积公式可求得结果【详解】由,得,则,设,则,在中,,由余弦定理得,,所以,所以,所以,所以,故答案为:16、12【解析】根据题意,先通过原始数据的平均数、方差及新数据的平均数求出k,进而求出新数据的方差.【详解】由题意,原式数据的平均数和方程分别为:,则新数据的平均数,于是新数据的方差.故答案为:12.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17、(1);(2)【解析】(1)根据,通过余弦定理求解.(2)根据,通过正弦定理,把角转化为边得,再根据,得.再代入的面积公式求解.【详解】(1)∵,∴由余弦定理得,又,∴.(2)∵,∴由正弦定理得,∵,∴,又,∴∴面积【点睛】本题主要考查余弦定理和正弦定理的应用,还考查了运算求解的能力,属于中档题.18、(1)(2)【解析】(1)求得,的值即可确定椭圆方程;(2)分类讨论直线的斜率存在和斜率不存在两种情况即可确定为定值【小问1详解】由题意知:根据椭圆的定义得:,即,所以椭圆的标准方程为【小问2详解】当直线的斜率不存在时,的方程是此时,所以当直线的斜率存在时,设直线的方程为,,,,由可得显然△,则,因为,所以所以,此时综上所述,为定值19、(1);(2).【解析】(1)利用椭圆的定义求△的周长;(2)设直线与椭圆相切,联立方程求参数m,与之间的距离的最大值,即为椭圆E上的点到直线l距离的最大值.【小问1详解】已知椭圆E方程为,所以,△的周长为,其中,所以△的周长为.【小问2详解】设直线与直线l平行且与椭圆相切,则,得,即,令,解得,所以,与之间的距离,即椭圆E上的点到直线l距离的最大值为20、(1)(2)【解析】(1)设点,根据题意,得到,根据向量数量积的坐标表示,得到,根据其最小值,求出,即可得出椭圆方程;(2)设,,,联立直线与椭圆方程,根据韦达定理,由弦长公式,以及点到直线距离公式,求出的面积的最值,得到;得出点的轨迹为椭圆,且点为椭圆的左、右焦点,记,则,得到,根据对勾函数求出最值.【小问1详解】设点,由题意知,所以:,则,当时,取得最大值,即,故椭圆C的标准方程是【小问2详解】设,,,则由得,,点O到直线l的距离,对用均值不等式,则:当且仅当即,①,S取得最大值.此时,,,即,代入①式整理得,即点M的轨迹为椭圆且点,为椭圆的左、右焦点,即记,则于是:,由对勾函数的性质:当时,,且,故的取值范围为21、(1);(2)存在;或.【解析】(1)设,由,,,求得的值即可得椭圆的方程;(2)设,,直线的方程为与椭圆方程联立可得,,进而可得弦长,求出点到直线的距离,解方程,求得的值即可求解.【小问1详解】设,因为直线的斜率为,,所以,可得,又因为,所以,所以,所以椭圆的方程

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论